دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Uwe Mühlich
سری: Solid Mechanics and Its Applications, 268
ISBN (شابک) : 3031304217, 9783031304217
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 204
[205]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت تبدیل فایل کتاب Enhanced Introduction to Finite Elements for Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه پیشرفته برای اجزای محدود برای مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Symbols 1 Introduction 1.1 Boundary Value Problems and Their Strong Forms 1.2 The Structure of the Book 1.3 Challenges in Learning and Teaching the Method in an Engineering Context 2 Linear Boundary Value Problems 2.1 The Poisson Equation in mathbbR 2.1.1 Strong Form 2.1.2 The Weak Derivative 2.1.3 Variational and Weak Form 2.1.4 A Precursor of FEM 2.1.5 Comments on Functional Analysis Background 2.1.6 Galerkin FEM with a Piecewise Linear Global Basis 2.1.7 Galerkin FEM Using a Linear Local Basis 2.1.8 Non-homogeneous Dirichlet Conditions 2.1.9 Hand-Calculation Exercises 2.2 Poisson Equation in mathbbRN, N 2 2.2.1 Preliminary Remarks 2.2.2 Strong Form 2.2.3 First Order Weak Partial Derivatives 2.2.4 Variational and Weak Form 2.2.5 Galerkin FEM with Linear Quadrilateral Elements 2.3 Systematic Construction of Lagrange Elements 2.3.1 Overview 2.3.2 Lagrange Interpolation in mathbbR 2.3.3 Q-type Interpolation Bases in mathbbRN , N2 2.3.4 P-type Interpolation Bases in mathbbRN , N 2 2.3.5 Remarks on Integration Using Reference Domains 2.4 Linear Elastostatics 2.4.1 Preliminary Remarks 2.4.2 Strong Form 2.4.3 Strong Forms for Plane Stress and Plane Strain Problems 2.4.4 Variational and Weak Forms 2.4.5 Galerkin FEM for Plane Strain/Stress Problems 2.5 Boundary Value Problems of Fourth Order in mathbbR 2.5.1 Strong Form 2.5.2 Variational and Weak Form 2.5.3 Galerkin FEM Using C1 Continuity 2.6 Network Models 2.7 Hand Calculation Exercises 2.8 Computer Exercises 2.9 Bibliographical Remarks References 3 Linear Initial Boundary Value Problems 3.1 Introductory Example 3.2 Integration of Initial Value Problems 3.2.1 General Aspects 3.2.2 Finite Difference Methods and Simple Euler Methods 3.2.3 Runge-Kutta Methods 3.3 Stability of Time Integration Schemes 3.4 Non-stationary Linear Transport 3.4.1 Time-Continuous Variational Form 3.4.2 Galerkin FEM 3.4.3 Time Integration 3.5 Linear Structural Dynamics 3.5.1 Strong Form and Time-Continuous Variational Form 3.5.2 Galerkin FEM and Time Integration with Central Differences 3.5.3 Newmark's Method 3.5.4 Stability of Time Integration Methods 3.6 Bibliographical Remarks References 4 Non-linear Boundary Value Problems 4.1 Non-linear Poisson Equation in mathbbR 4.1.1 Strong Form 4.1.2 Variational and Weak Form 4.1.3 Galerkin FEM 4.2 Newton's Method for Solving Non-linear Equations 4.3 Solving the System of Non-linear FEM Equations 4.4 Gauss-Legendre Integration 4.5 Implementation Aspects 4.6 Bibliographical Remarks References 5 A Primer on Non-linear Dynamics and Multiphysics 5.1 Non-linear Dynamics 5.1.1 Strong and Time Continuous Variational Form 5.1.2 Galerkin FEM and Time Integration 5.2 Thermo-Mechanical Coupling 5.2.1 Strong Form 5.2.2 Time Continuous Variational Form and FEM Discretisation 5.3 Bibliographical Remarks References Appendix A Elements of Linear Algebra A.1 Preliminaries A.2 Elementary Algebraic Structures A.3 The Real Vector Space A.4 Inner Product, Norm and Metric A.5 The Vector Space mathbbRN A.6 Linear Mappings and Tensors A.7 Linear Mappings and Matrices A.8 Systems of Linear Equations and Matrix Properties A.9 Bibliographical Remarks Appendix B Elements of Real Analysis B.1 Basic Topological Aspects B.2 Limits and Convergence of Sequences and Series B.3 Real Functions: Continuity and Boundedness B.4 Sequences and Series of Functions B.5 Gradient and Differential in mathbbR B.6 Gradient and Differential in mathbbRN B.7 Notation Using Differential Operators in mathbbRN B.8 Notes on Riemann Integral and Lebesgue Integral B.9 Comments on Notation for Integrals in mathbbRN B.10 Integration Theorems in mathbbRN B.11 Mappings and Their Jacobians B.12 Bibliographical Remarks Appendix C Elements of Linear Functional Analysis C.1 Motivation C.2 Introduction to Function Spaces C.3 Linear Mappings and Linear Forms C.4 Weak Derivative C.5 Sobolev Spaces C.6 Variational Formulation of Boundary Value Problems C.7 The Lax-Milgram Lemma C.8 Weak Solutions of Boundary Value Problems C.9 Generalisations C.10 Bibliographical Remarks Appendix D Solutions of Selected Problems Index