دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Kavati Venkateswarlu سری: ISBN (شابک) : 0367646285, 9780367646288 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 489 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Engineering Thermodynamics: Fundamental and Advanced Topics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک مهندسی: مباحث اساسی و پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page dedication Table of Contents Foreword Preface Acknowledgments Author Chapter 1 Introduction and Basic Concepts 1.1 Introduction to Thermodynamics 1.2 Thermodynamic Systems 1.3 Thermodynamic Properties 1.4 State, Processes, and Cycles 1.5 Homogeneous and Heterogeneous Systems 1.6 Thermodynamic Equilibrium 1.7 Specific Volume and Density 1.8 Pressure 1.9 Pressure-Measuring Devices Example Problems Review Questions Exercise Problems Chapter 2 Temperature: Zeroth Law of Thermodynamics 2.1 Temperature 2.2 Zeroth Law of Thermodynamics 2.3 Thermometers—Temperature Measurement 2.3.1 Reference Points 2.3.2 Liquid-in-Glass Tube Thermometer 2.3.3 Gas Thermometers 2.3.4 Electrical Resistance Thermometer 2.3.5 Thermocouple 2.4 Temperature Scales 2.4.1 Ideal Gas Temperature Scale 2.4.2 International Temperature Scale Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 3 Energy and the First Law of Thermodynamics 3.1 Energy Analysis 3.2 Different Forms of Stored Energy 3.3 Point Function and Path Function 3.4 Heat Transfer 3.5 Work Transfer 3.6 Different Forms of Work 3.7 Relationship Between Heat and Work 3.8 First Law of Thermodynamics 3.9 Moving Boundary Work (pdV Work) 3.10 Energy Analysis of Closed Systems 3.10.1 First Law for a Closed System Undergoing a Cycle 3.10.2 First Law for a Closed System Undergoing a Change of State 3.11 Specific Heat and Latent Heat 3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 3.13 Perpetual Motion Machine of the First Kind—PMM1 3.14 Energy Efficiency 3.14.1 Energy Conversion Efficiency 3.14.2 Energy-Efficient Buildings 3.14.3 Cost-Effectiveness of Reflective White Materials 3.14.4 Energy-Efficient Motors 3.14.5 Energy-Efficient Compressors 3.15 Energy Sustainability 3.16 Energy Security 3.17 Energy Conservation Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 4 Properties of Pure Substances 4.1 Pure Substances and Their Phases 4.2 Phase Change Processes of Pure Substances 4.3 p-v Diagram of a Pure Substance 4.4 T-v Diagram of a Pure Substance 4.5 p-T Diagram of a Pure Substance 4.6 p-v-T Surface 4.7 T-s Diagram of a Pure Substance 4.8 h-s Diagram or Mollier Diagram 4.9 Quality or Dryness Fraction—Property Tables 4.9.1 Quality or Dryness Fraction 4.9.2 Compressed Liquid or Subcooled Liquid 4.9.3 Superheated Vapor Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 5 First Law Analysis of Control Volumes 5.1 Control Volume 5.2 Mass Balance 5.3 Flow Work 5.4 Steady-Flow Processes 5.5 First Law Analysis of Steady-Flow Processes 5.6 Steady-Flow Energy Equation Needs 5.7 Steady-Flow Devices 5.7.1 Turbines and Compressors 5.7.2 Nozzles and Diffusers 5.7.3 Throttling 5.7.4 Heat Transfer 5.8 First Law Analysis of Unsteady-Flow Processes Example Problems Review Questions Exercise Problems Design Problems Chapter 6 Second Law of Thermodynamics 6.1 Limitations of the First Law of Thermodynamics 6.2 Second Law Statements 6.2.1 Kelvin–Planck Statement 6.2.2 Clausius Statement of the Second Law 6.2.3 Equivalence of Kelvin–Planck and Clausius Statements 6.3 Reversible and Irreversible Processes 6.3.1 Reversible Process 6.3.2 Irreversible Process 6.4 Second Law Application to Power Cycles 6.4.1 Thermal Efficiency of Power Cycles 6.4.2 Corollaries of the Second Law for Power Cycles 6.5 Refrigeration and Heat Pump Cycles 6.5.1 Refrigeration Cycles 6.5.2 Heat Pump Cycles 6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio 6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles 6.6 Thermodynamic Temperature Scale 6.7 Carnot Cycle 6.7.1 The Carnot Power Cycle 6.7.2 The Carnot Refrigerator and Heat Pump Cycles Example Problems Review Questions Exercise Problems Design Problems Chapter 7 Entropy 7.1 Inequality of Clausius 7.2 Entropy—A Property of a System 7.3 Principle of Entropy 7.4 The Concept of Entropy 7.5 The Tds Equations 7.6 Entropy Change of Pure Substances 7.7 Entropy Change of an Ideal Gas 7.8 Entropy Change of Solids and Liquids 7.9 Entropy Balance 7.9.1 Entropy Change of a System 7.9.2 Entropy Transfer by Heat and Mass Transfer 7.9.3 Entropy Generation—Closed System and Control Volume 7.10 Isentropic Process 7.11 Isentropic Efficiency 7.11.1 Isentropic Efficiency of a Turbine 7.11.2 Isentropic Efficiency of a Compressor and a Pump 7.11.3 Isentropic Efficiency of a Nozzle Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 8 Properties of Gases and Gas Mixtures 8.1 Ideal Gas Equation of State 8.2 Other Equations of State 8.3 Compressibility Factor—The Deviation of Real Gases from the Ideal Gas Behaviour 8.4 Gas Compression—Reducing the Work of Compression 8.5 Properties of Gas Mixtures 8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures 8.7 Entropy of Gas Mixtures Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 9 Concept of Available Energy (Exergy) 9.1 Available Energy (Exergy) 9.2 Reversible Work and Irreversibility 9.2.1 Useful Work 9.2.2 Reversible Work 9.3 Exergy Change of a System 9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings 9.3.2 Exergy of Non-Flowing Fluids (Closed Systems) 9.4 Exergy Transfer by Heat, Work, and Mass 9.5 Second-Law Efficiency 9.6 Exergy Destruction 9.7 Exergy Balance Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 10 Vapor and Advanced Power Cycles 10.1 Carnot Vapor Cycle 10.2 Rankine Cycle 10.3 Comparison of Rankine and Carnot Cycles 10.4 Mean Temperature of the Heat Addition 10.5 Efficiency Improvement of the Rankine Cycle 10.6 Reheat Rankine Cycle 10.7 Regenerative Rankine Cycle 10.8 Ideal Working Fluids for Vapor Cycles 10.9 Binary Vapor Cycles 10.10 Organic Rankine Cycle 10.10.1 Efficiency of the Cycle 10.10.2 The Ideal Working Fluids for the Combined ORC 10.11 Cogeneration 10.12 Exergy Analysis of Vapor Power Cycles 10.13 Combined Cycle Power Plants 10.13.1 The Effect of Operating Parameters on Combined Cycle Performance 10.13.2 Combined Cycle Power Plant Integrated with ORC 10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System 10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants 10.14.1 Working of IGCC Power Plant 10.14.2 Carbon Dioxide Capture from IGCC Power Plant 10.15 Power Cycles for Nuclear Plants 10.15.1 Nuclear Power Plant 10.15.2 Nuclear Fuels Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 11 Gas Power Cycles 11.1 General Analysis of Cycles 11.2 Carnot Cycle 11.3 Air-Standard Cycles—Assumptions 11.4 Reciprocating Engines—An Overview 11.5 Otto Cycle 11.6 Diesel Cycle 11.7 Dual Cycle 11.8 Comparison of Otto, Diesel, And Dual Cycles 11.8.1 Based on Same Compression Ratio and Heat Rejection 11.8.2 Based on Same Maximum Pressure and Temperature 11.9 Stirling and Ericsson Cycles 11.10 Brayton Cycle-Gas Turbine Power Plants 11.11 Brayton Cycle with Regeneration 11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration 11.12.1 Brayton Cycle with Intercooling 11.12.2 Brayton Cycle with Reheating 11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration 11.13 Gas Turbines for Jet Propulsion 11.13.1 Rocket Engine 11.13.2 Compressors Used in Jet Engines 11.14 Exergy Analysis of Gas Power Cycles 11.15 New Combustion Systems for Gas Turbines 11.15.1 Trapped Vortex Combustion (TVC) 11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL) 11.15.3 Double Annular Combustor (DAC) 11.15.4 Axially Staged Combustors (ASC) 11.15.5 Twin Annular Premixing Swirler Combustors (TAPS) 11.15.6 Lean Direct Injection (LDI) Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 12 Refrigeration Cycles 12.1 Reversed Carnot Cycle 12.2 Refrigerators and Heat Pumps 12.3 Vapor Compression Refrigeration Cycle 12.3.1 COP of Vapor Compression Refrigeration System 12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle 12.4 Refrigerants 12.4.1 Low–Global Warming Potential (Low-GWP) Refrigerants 12.4.2 Current Low-GWP Refrigerant Options 12.5 Vapor Absorption Refrigeration Cycle 12.6 Gas Cycle Refrigeration 12.7 Innovative Vapor Compression Refrigeration Systems 12.7.1 Multistage Vapor Compression Refrigeration Systems 12.7.2 Cascade Refrigeration System 12.7.3 Liquefaction of Gases 12.8 Energy Conservation in Domestic Refrigerators 12.8.1 Effect of Room Temperature on Energy Consumption 12.8.2 Effect of Thermal Load on Energy Consumption 12.8.3 Effect of Cooling of Compressor Shell with the Defrost Drips Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 13 Thermodynamic Relations 13.1 Important Mathematical Relations 13.2 The Maxwell Relations 13.3 Clausius–Clapeyron Equation 13.4 The Joule–Thomson Coefficient 13.5 General Relations for Changes in Enthalpy, Internal Energy, and Entropy 13.5.1 Change in Enthalpy 13.5.2 Change in Internal Energy 13.5.3 Change in Entropy 13.6 Specific Heat Relations Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 14 Psychrometry 14.1 Properties of Atmospheric Air 14.1.1 Specific Humidity and Relative Humidity 14.1.2 Dew-Point Temperature 14.1.3 Wet-Bulb and Dry-Bulb Temperatures 14.2 A Diabatic Saturation 14.3 Psychrometric Chart 14.4 Air-Conditioning Processes 14.4.1 Sensible Heating and Cooling 14.4.2 Heating with Humidification 14.4.3 Cooling with Dehumidification 14.4.4 Evaporative Cooling 14.4.5 Adiabatic Mixing of Airstreams Example Problems Review Questions Exercise Problems Design and Experiment Problems Chapter 15 Chemical Potential of Ideal Fermi and Bose Gases 15.1 Introduction 15.2 Chemical Potential and Fugacity 15.3 Chemical Potential and Thermal Radiation 15.4 Properties of Ideal Fermi–Dirac and Bose–Einstein Gases 15.5 Bose and Fermi Fugacity 15.6 Low-Temperature Behaviour of Physical Systems 15.6.1 Fermi Low-Temperature Expansions 15.6.2 Bose Low-Temperature Expansions Review Questions Chapter 16 Irreversible Thermodynamics 16.1 New Concepts Based on the Second Law of Thermodynamics 16.2 An Overview of Equilibrium and Non-Equilibrium Thermodynamics 16.3 Local Equilibrium Thermodynamics 16.4 Coupled Phenomena 16.5 Onsager’s Reciprocal Relations 16.6 Entropy and Entropy Production 16.7 Linear Phenomenological Equations 16.8 Thermoelectric Phenomena 16.8.1 Seebeck Effect 16.8.2 Peltier Effect 16.8.3 Joule Effect 16.8.4 Kelvin Effect 16.9 Thermodynamic Forces and Thermodynamic Velocities 16.10 Stationary States, Fluctuations, and Stability Review Questions References Index