ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Engineering Thermodynamics: Fundamental and Advanced Topics

دانلود کتاب ترمودینامیک مهندسی: مباحث اساسی و پیشرفته

Engineering Thermodynamics: Fundamental and Advanced Topics

مشخصات کتاب

Engineering Thermodynamics: Fundamental and Advanced Topics

دسته بندی: فن آوری
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0367646285, 9780367646288 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 489 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Engineering Thermodynamics: Fundamental and Advanced Topics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترمودینامیک مهندسی: مباحث اساسی و پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
dedication
Table of Contents
Foreword
Preface
Acknowledgments
Author
Chapter 1 Introduction and Basic Concepts
	1.1 Introduction to Thermodynamics
	1.2 Thermodynamic Systems
	1.3 Thermodynamic Properties
	1.4 State, Processes, and Cycles
	1.5 Homogeneous and Heterogeneous Systems
	1.6 Thermodynamic Equilibrium
	1.7 Specific Volume and Density
	1.8 Pressure
	1.9 Pressure-Measuring Devices
	Example Problems
	Review Questions
	Exercise Problems
Chapter 2 Temperature: Zeroth Law of Thermodynamics
	2.1 Temperature
	2.2 Zeroth Law of Thermodynamics
	2.3 Thermometers—Temperature Measurement
		2.3.1 Reference Points
		2.3.2 Liquid-in-Glass Tube Thermometer
		2.3.3 Gas Thermometers
		2.3.4 Electrical Resistance Thermometer
		2.3.5 Thermocouple
	2.4 Temperature Scales
		2.4.1 Ideal Gas Temperature Scale
		2.4.2 International Temperature Scale
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 3 Energy and the First Law of Thermodynamics
	3.1 Energy Analysis
	3.2 Different Forms of Stored Energy
	3.3 Point Function and Path Function
	3.4 Heat Transfer
	3.5 Work Transfer
	3.6 Different Forms of Work
	3.7 Relationship Between Heat and Work
	3.8 First Law of Thermodynamics
	3.9 Moving Boundary Work (pdV Work)
	3.10 Energy Analysis of Closed Systems
		3.10.1 First Law for a Closed System Undergoing a Cycle
		3.10.2 First Law for a Closed System Undergoing a Change of State
	3.11 Specific Heat and Latent Heat
	3.12 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases
	3.13 Perpetual Motion Machine of the First Kind—PMM1
	3.14 Energy Efficiency
		3.14.1 Energy Conversion Efficiency
		3.14.2 Energy-Efficient Buildings
		3.14.3 Cost-Effectiveness of Reflective White Materials
		3.14.4 Energy-Efficient Motors
		3.14.5 Energy-Efficient Compressors
	3.15 Energy Sustainability
	3.16 Energy Security
	3.17 Energy Conservation
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 4 Properties of Pure Substances
	4.1 Pure Substances and Their Phases
	4.2 Phase Change Processes of Pure Substances
	4.3 p-v Diagram of a Pure Substance
	4.4 T-v Diagram of a Pure Substance
	4.5 p-T Diagram of a Pure Substance
	4.6 p-v-T Surface
	4.7 T-s Diagram of a Pure Substance
	4.8 h-s Diagram or Mollier Diagram
	4.9 Quality or Dryness Fraction—Property Tables
		4.9.1 Quality or Dryness Fraction
		4.9.2 Compressed Liquid or Subcooled Liquid
		4.9.3 Superheated Vapor
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 5 First Law Analysis of Control Volumes
	5.1 Control Volume
	5.2 Mass Balance
	5.3 Flow Work
	5.4 Steady-Flow Processes
	5.5 First Law Analysis of Steady-Flow Processes
	5.6 Steady-Flow Energy Equation Needs
	5.7 Steady-Flow Devices
		5.7.1 Turbines and Compressors
		5.7.2 Nozzles and Diffusers
		5.7.3 Throttling
		5.7.4 Heat Transfer
	5.8 First Law Analysis of Unsteady-Flow Processes
	Example Problems
	Review Questions
	Exercise Problems
	Design Problems
Chapter 6 Second Law of Thermodynamics
	6.1 Limitations of the First Law of Thermodynamics
	6.2 Second Law Statements
		6.2.1 Kelvin–Planck Statement
		6.2.2 Clausius Statement of the Second Law
		6.2.3 Equivalence of Kelvin–Planck and Clausius Statements
	6.3 Reversible and Irreversible Processes
		6.3.1 Reversible Process
		6.3.2 Irreversible Process
	6.4 Second Law Application to Power Cycles
		6.4.1 Thermal Efficiency of Power Cycles
		6.4.2 Corollaries of the Second Law for Power Cycles
	6.5 Refrigeration and Heat Pump Cycles
		6.5.1 Refrigeration Cycles
		6.5.2 Heat Pump Cycles
		6.5.3 Energy Efficiency Ratio and Seasonal Energy Efficiency Ratio
		6.5.4 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles
	6.6 Thermodynamic Temperature Scale
	6.7 Carnot Cycle
		6.7.1 The Carnot Power Cycle
		6.7.2 The Carnot Refrigerator and Heat Pump Cycles
	Example Problems
	Review Questions
	Exercise Problems
	Design Problems
Chapter 7 Entropy
	7.1 Inequality of Clausius
	7.2 Entropy—A Property of a System
	7.3 Principle of Entropy
	7.4 The Concept of Entropy
	7.5 The Tds Equations
	7.6 Entropy Change of Pure Substances
	7.7 Entropy Change of an Ideal Gas
	7.8 Entropy Change of Solids and Liquids
	7.9 Entropy Balance
		7.9.1 Entropy Change of a System
		7.9.2 Entropy Transfer by Heat and Mass Transfer
		7.9.3 Entropy Generation—Closed System and Control Volume
	7.10 Isentropic Process
	7.11 Isentropic Efficiency
		7.11.1 Isentropic Efficiency of a Turbine
		7.11.2 Isentropic Efficiency of a Compressor and a Pump
		7.11.3 Isentropic Efficiency of a Nozzle
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 8 Properties of Gases and Gas Mixtures
	8.1 Ideal Gas Equation of State
	8.2 Other Equations of State
	8.3 Compressibility Factor—The Deviation of Real Gases from the Ideal Gas Behaviour
	8.4 Gas Compression—Reducing the Work of Compression
	8.5 Properties of Gas Mixtures
	8.6 Internal Energy, Enthalpy, and Specidic Heats of Gas Mixtures
	8.7 Entropy of Gas Mixtures
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 9 Concept of Available Energy (Exergy)
	9.1 Available Energy (Exergy)
	9.2 Reversible Work and Irreversibility
		9.2.1 Useful Work
		9.2.2 Reversible Work
	9.3 Exergy Change of a System
		9.3.1 Exergy of a Flow Stream (Open System) Exchanging Heat Only with Surroundings
		9.3.2 Exergy of Non-Flowing Fluids (Closed Systems)
	9.4 Exergy Transfer by Heat, Work, and Mass
	9.5 Second-Law Efficiency
	9.6 Exergy Destruction
	9.7 Exergy Balance
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 10 Vapor and Advanced Power Cycles
	10.1 Carnot Vapor Cycle
	10.2 Rankine Cycle
	10.3 Comparison of Rankine and Carnot Cycles
	10.4 Mean Temperature of the Heat Addition
	10.5 Efficiency Improvement of the Rankine Cycle
	10.6 Reheat Rankine Cycle
	10.7 Regenerative Rankine Cycle
	10.8 Ideal Working Fluids for Vapor Cycles
	10.9 Binary Vapor Cycles
	10.10 Organic Rankine Cycle
		10.10.1 Efficiency of the Cycle
		10.10.2 The Ideal Working Fluids for the Combined ORC
	10.11 Cogeneration
	10.12 Exergy Analysis of Vapor Power Cycles
	10.13 Combined Cycle Power Plants
		10.13.1 The Effect of Operating Parameters on Combined Cycle Performance
		10.13.2 Combined Cycle Power Plant Integrated with ORC
		10.13.3 Combined Cycle Power Plant Integrated with Absorption Refrigeration System
	10.14 Integrated Coal Gasification Combined Cycle (IGCC) Power Plants
		10.14.1 Working of IGCC Power Plant
		10.14.2 Carbon Dioxide Capture from IGCC Power Plant
	10.15 Power Cycles for Nuclear Plants
		10.15.1 Nuclear Power Plant
		10.15.2 Nuclear Fuels
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 11 Gas Power Cycles
	11.1 General Analysis of Cycles
	11.2 Carnot Cycle
	11.3 Air-Standard Cycles—Assumptions
	11.4 Reciprocating Engines—An Overview
	11.5 Otto Cycle
	11.6 Diesel Cycle
	11.7 Dual Cycle
	11.8 Comparison of Otto, Diesel, And Dual Cycles
		11.8.1 Based on Same Compression Ratio and Heat Rejection
		11.8.2 Based on Same Maximum Pressure and Temperature
	11.9 Stirling and Ericsson Cycles
	11.10 Brayton Cycle-Gas Turbine Power Plants
	11.11 Brayton Cycle with Regeneration
	11.12 Brayton Cycle with Intercooling, Reheating, and Regeneration
		11.12.1 Brayton Cycle with Intercooling
		11.12.2 Brayton Cycle with Reheating
		11.12.3 Brayton Cycle with Intercooling, Reheating, And Regeneration
	11.13 Gas Turbines for Jet Propulsion
		11.13.1 Rocket Engine
		11.13.2 Compressors Used in Jet Engines
	11.14 Exergy Analysis of Gas Power Cycles
	11.15 New Combustion Systems for Gas Turbines
		11.15.1 Trapped Vortex Combustion (TVC)
		11.15.2 Rich Burn, Quick-Mix, Lean Burn (RQL)
		11.15.3 Double Annular Combustor (DAC)
		11.15.4 Axially Staged Combustors (ASC)
		11.15.5 Twin Annular Premixing Swirler Combustors (TAPS)
		11.15.6 Lean Direct Injection (LDI)
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 12 Refrigeration Cycles
	12.1 Reversed Carnot Cycle
	12.2 Refrigerators and Heat Pumps
	12.3 Vapor Compression Refrigeration Cycle
		12.3.1 COP of Vapor Compression Refrigeration System
		12.3.2 Exergy Analysis of Vapor Compression Refrigeration Cycle
	12.4 Refrigerants
		12.4.1 Low–Global Warming Potential (Low-GWP) Refrigerants
		12.4.2 Current Low-GWP Refrigerant Options
	12.5 Vapor Absorption Refrigeration Cycle
	12.6 Gas Cycle Refrigeration
	12.7 Innovative Vapor Compression Refrigeration Systems
		12.7.1 Multistage Vapor Compression Refrigeration Systems
		12.7.2 Cascade Refrigeration System
		12.7.3 Liquefaction of Gases
	12.8 Energy Conservation in Domestic Refrigerators
		12.8.1 Effect of Room Temperature on Energy Consumption
		12.8.2 Effect of Thermal Load on Energy Consumption
		12.8.3 Effect of Cooling of Compressor Shell with the Defrost Drips
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 13 Thermodynamic Relations
	13.1 Important Mathematical Relations
	13.2 The Maxwell Relations
	13.3 Clausius–Clapeyron Equation
	13.4 The Joule–Thomson Coefficient
	13.5 General Relations for Changes in Enthalpy, Internal Energy, and Entropy
		13.5.1 Change in Enthalpy
		13.5.2 Change in Internal Energy
		13.5.3 Change in Entropy
	13.6 Specific Heat Relations
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 14 Psychrometry
	14.1 Properties of Atmospheric Air
		14.1.1 Specific Humidity and Relative Humidity
		14.1.2 Dew-Point Temperature
		14.1.3 Wet-Bulb and Dry-Bulb Temperatures
	14.2 A Diabatic Saturation
	14.3 Psychrometric Chart
	14.4 Air-Conditioning Processes
		14.4.1 Sensible Heating and Cooling
		14.4.2 Heating with Humidification
		14.4.3 Cooling with Dehumidification
		14.4.4 Evaporative Cooling
		14.4.5 Adiabatic Mixing of Airstreams
	Example Problems
	Review Questions
	Exercise Problems
	Design and Experiment Problems
Chapter 15 Chemical Potential of Ideal Fermi and Bose Gases
	15.1 Introduction
	15.2 Chemical Potential and Fugacity
	15.3 Chemical Potential and Thermal Radiation
	15.4 Properties of Ideal Fermi–Dirac and Bose–Einstein Gases
	15.5 Bose and Fermi Fugacity
	15.6 Low-Temperature Behaviour of Physical Systems
		15.6.1 Fermi Low-Temperature Expansions
		15.6.2 Bose Low-Temperature Expansions
	Review Questions
Chapter 16 Irreversible Thermodynamics
	16.1 New Concepts Based on the Second Law of Thermodynamics
	16.2 An Overview of Equilibrium and Non-Equilibrium Thermodynamics
	16.3 Local Equilibrium Thermodynamics
	16.4 Coupled Phenomena
	16.5 Onsager’s Reciprocal Relations
	16.6 Entropy and Entropy Production
	16.7 Linear Phenomenological Equations
	16.8 Thermoelectric Phenomena
		16.8.1 Seebeck Effect
		16.8.2 Peltier Effect
		16.8.3 Joule Effect
		16.8.4 Kelvin Effect
	16.9 Thermodynamic Forces and Thermodynamic Velocities
	16.10 Stationary States, Fluctuations, and Stability
	Review Questions
References
Index




نظرات کاربران