دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: S. Mani Naidu
سری:
ISBN (شابک) : 9788131761847, 9789332509511
ناشر: Pearson Education
سال نشر: 2011
تعداد صفحات: 284
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Engineering Physics : For PTU (Subject Code: BTPH-101) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مهندسی: برای PTU (کد موضوع: BTPH-101) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface Acknowledgements Roadmap to the Syllabus Chapter 1: Electromagnetic Waves and Dielectrics 1.1 Introduction 1.2 Gradient of a scalar 1.3 Curl of a vector 1.4 Divergence of a vector 1.5 Relationship between the electric field (E) and electric potential (V) 1.6 The displacement current 1.7 Maxwell’s equations 1.8 Electromagnetic waves in free space and their velocity 1.9 Poynting vector 1.10 Electromagnetic spectrum 1.11 Dielectric polarization 1.12 Types of polarization (a) Dipolar or orientational polarization (b) Ionic polarization (c) Electronic polarization (d) Space charge (or) Interfacial polarization Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 2: Magnetic Materials and Superconductivity Part A: Magnetic materials 2.1 Introduction 2.2 Diamagnetic materials 2.3 Paramagnetic materials 2.4 Ferromagnetic materials 2.5 Anti-ferromagnetic materials 2.6 Ferrimagnetic materials [Ferrites] 2.7 Magnetic anisotropy 2.8 Magnetostriction 2.9 Production of ultrasonic waves by magnetostriction Part B: Super conductivity 2.10 Introduction 2.11 Significances or general features of super conductors 2.12 Meissnereffect and superconductor as ideal diamagnetic material 2.13 Type-I and Type-II Superconductors 2.14 London equations 2.15 BCS Theory Description Coherent length BCS ground state Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 3: Elements of Crystallography 3.1 Introduction Distinction between crystalline and amorphous solids 3.2 Space lattice or crystal lattice 3.3 The basis and crystal structure 3.4 Unit cell and lattice parameters 3.5 Crystal systems and bravais lattices 3.6 Crystal planes, directions and miller indices 3.7 Characteristic and continuous X-rays 3.8 Diffraction of X-rays by crystal planes and Bragg’s law 3.9 Bragg’s spectrometer 3.10 X-ray radiography Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 4: Lasers 4.1 Introduction 4.2 Spontaneous and stimulated emission 4.3 Einstein’s coefficients 4.4 Population inversion and pumping mechanisms 4.5 Components of a laser system 4.6 Helium–Neon gas [He–Ne] laser 4.7 Ruby laser 4.8 Semi conductor laser 4.9 Carbon dioxide laser 4.10 Applications of lasers 4.11 Holography (a) Introduction (b) Basic principle of holography (c) Recording of image on a holographic plate (d) Reconstruction of image from a hologram (e) Applications of holography Formula Solved Problems Multiple-choice Questions Answers Review Questions Chapter 5: Fibre Optics 5.1 Introduction 5.2 Principle of optical fibre, acceptance angle and acceptance cone 5.3 Numerical aperture (NA) 5.4 Step index and graded index fibres –Transmission of signals in them 5.5 Normalized frequency (or V-number) and modes of propagation 5.6 Material dispersion and pulse broadeningin optical fibres 5.7 Splicing 5.8 Connectors 5.9 Couplers 5.10 Applications of optical fibres (i) Sensing applications (a) Displacement sensors (b) Liquid level sensor (c) Temperature and pressure sensor (d) Chemical sensors (ii) Medical applications (a) Endoscope Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 6: Special Theory of Relativity 6.1 Introduction 6.2 Absolute frame of reference and ether 6.3 The Michelson–Morley experiment 6.3.1 Experimental set-up 6.3.2 Explanations for negative result 6.4 Postulates of special theory of relativity 6.5 Lorentz transformation of space and time 6.6 Length contraction 6.7 Time dilation 6.8 Concept of simultaneity 6.9 Addition of velocities 6.10 Variation of mass with velocity 6.11 Mass–energy equivalence 6.12 Energy and momentum relation Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 7: Quantum Theory 7.1 Need and origin of quantum concept 7.2 Wave particle duality–Matter waves Matter waves Properties of matter waves 7.3 Phase and group velocities (a) Phase velocity Group velocity Expression for group velocity Relation between group velocity and phase velocity Relation between group velocity and particle velocity 7.4 Uncertainty principle 7.5 Schrödinger’s time dependent and time independent wave equation 7.6 Physical significance of wave function 7.7 Normalization of wave function 7.8 Eigen functions and Eigen values 7.9 Particle in a potential box (a) Particle in a one-dimensional box [or one dimensional potential well] Determination of B by normalization Probability of location of the particle (b) Particle in a rectangular three-dimensional box Formulae Solved Problems Multiple-choice Questions Answers Review Questions Chapter 8: Nanophysics 8.1 Introduction 8.2 Nanoscale 8.3 Surface to volume ratio Spherical material 8.4 Electron confinement Quantum confinement effects 8.5 Nanomaterials 8.6 Nanoparticles (1D, 2D, 3D) Quantum wells Quantum wires Quantum dots 8.7 Unusual properties of nanomaterials (a) Physical properties (i) Geometric structure (ii) Optical properties (iii) Thermal properties (iv) Magnetic properties (v) Electronic properties (vi) Mechanical properties (b) Chemical properties 8.8 Fabrication of nanomaterials 8.9 Synthesis (or production) of nanomaterials (i) Plasma arcing (ii) Sol–gel method (iii) Chemical vapour deposition (iv) Ball milling (v) Electrodeposition 8.10 Carbon nanotubes (a) Introduction (b) Formation of nanotubes (c) Properties of nanotubes (d) Applications of nanotubes 8.11 Applications of nanomaterials Multiple-choice Questions Answers Review questions Solved Question Papers Index