دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: V. Rajendran
سری:
ISBN (شابک) : 9780071070140, 0071070141
ناشر: Tata McGraw-Hill
سال نشر: 2011
تعداد صفحات: 894
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 76 مگابایت
در صورت تبدیل فایل کتاب Engineering physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title About The Author Title Page Copyright Preface Acknowledgements Foreword Contents Chapter 1. Elasticity 1.1 Introduction 1.2 Classification of Elastic Materials 1.3 Stress 1.4 Strain 1.5 Hooke’s Law 1.6 Elastic Behaviour of a Material 1.7 Factors Affecting Elasticity 1.8 Classification of Elastic Modulus 1.9 Poisson’s Ratio 1.10 Relation Between Elastic Moduli 1.11 Twisting Couple on a Wire 1.12 Twisting Couple on a Solid Shaft 1.13 Torsional Pendulum 1.14 Bending of Beam 1.15 Cantilever Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 2. Viscosity 2.1 Introduction 2.2 Coefficient of Viscosity 2.3 Streamline and Turbulent Flow 2.4 Reynold’s Number 2.5 Poiseuille’s Equation for the Flow of a Liquid Through a Tube 2.6 Motion of a Rigid Body in a Viscous Medium 2.7 Experimental Determination of Viscosity of a Liquid Keypoints to Remember Solved Problems Objective Questions Exercises Short Questions Descriptive Questions Chapter 3. Vacuum Technique 3.1 Introduction 3.2 Types of Pumps 3.3 Vacuum Systems 3.4 Production of Vacuum 3.5 Measurements of Vacuum 3.6 Importance of Vacuum in Industries 3.7 Vacuum Techniques Applications Keypoints to Remember Objective Questions Short Answer Questions Descriptive-Type Questions Chapter 4. Acoustics 4.1 Introduction 4.2 Classification of Sound 4.3 Characteristics of Musical Sounds 4.4 Transmission of Sound 4.5 Transmission Loss 4.6 Acoustics of Buildings 4.7 Sabine’s Formula for Reverberation 4.8 Measurement of Absorption Coefficient 4.9 Sound Absorbing Materials 4.10 Factors Affecting Acoustics of Buildings and Their Remedies 4.11 Principles to be Observed in the Acoustical Design of an Auditorium 4.12 Acoustical Analysis and its Correction 4.13 Sound Insulation 4.14 Noise Pollution 4.15 Noise Control in Machines Keypoints to Remember Solved Problems Exercises Objectives Questions Descriptive Questions Chapter 5. Ultrasonics 5.1 Introduction 5.2 Classification of Ultrasonic Waves 5.3 Properties of Ultrasonic waves 5.4 Generation of Ultrasonic waves 5.5 Ultrasonic Velocity Measurements 5.6 Absorption and Dispersion of ultrasonic waves 5.7 Source of Sound Absorption and Dispersion 5.8 Applications—Industry 5.9 Applications—Medicine 5.10 Acoustic Holography 5.11 General Applications Keypoints to Remember Solved Problems Objectives Questions Exercises Short Answer Questions Descriptive Questions Chapter 6. Non-Destructive Testing 6.1 Introduction 6.2 Classification of Testing Methods 6.3 Visual Inspection 6.4 Liquid Penetrant Testing 6.5 Radiography 6.6 Ultrasonic Testing 6.7 Thermography Keypoints to Remember Solved Problems Objectives Questions Short Answer Questions Descriptive Questions Chapter 7. Interference 7.1 Introduction 7.2 Interference Produced in Thin Films due to Reflected Light 7.3 Air Wedge 7.4 Anti-Reflection Coating 7.5 Multi Layer Periodic System 7.6 High-Pass and Low-Pass Filters 7.7 Nterference Filter (Fabry–Perot Interference Filter) 7.8 Michelson’s Interferometer Keypoints to Remember Solved Problems Objectives Questions Exercises Short−Answer Questions Descriptive Questions Chapter 8. Polarisation 8.1 Introduction 8.2 Fundamentals of Polarised Light 8.3 Nicol Prism 8.4 Quarter Wave Plate 8.5 Half Wave Plate 8.6 Theory of Polarised Light 8.7 Plane Polarised Light by Nicol Prism 8.8 Production of Plane, Circularly and Elliptically Polarised Light 8.9 Detection of Plane, Circularly and Elliptically Polarised Light Keypoints to Remember Solved Problems Objectives Questions Short Questions Exercises Descriptive Questions Chapter 9. Photoelasticity 9.1 Introduction 9.2 Definitions 9.3 Theory of Photoelasticity 9.4 Arrangement of Optical Elements in a Polariscope 9.5 Interpretation of Isoclinic and Isochromatic Fringes 9.6 Photoelastic Bench Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 10. Optical and Other Instruments 10.1 Introduction 10.2 Sextant 10.3 Metallurgical Microscope 10.4 Focusing of Electron Beams 10.5 Electron Microscope 10.6 Scanning Electron Microscope 10.7 Transmission Electron Microscope 10.8 Scanning Transmission Electron Microscope Keypoints to Remember Objectives Questions Short Questions Descriptive Questions Chapter 11. Laser 11.1 Introduction 11.2 Principle of Laser 11.3 Einstein’s Theory of Stimulated Emission 11.4 Population Inversion 11.5 Methods of Achieving Population Inversion 11.6 Threshold Condition (Schawlow and Townes Condition) 11.7 Types of Lasers 11.8 Determination of Wavelength of Laser Using Grating 11.9 Particle Size Determination by Laser 11.10 Applications of Lasers Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 12. Fiber Optics 12.1 Introduction 12.2 Optical Fibers–Principle 12.3 Structure of Optical Fibers 12.4 Acceptance Angle and Cone 12.5 Numerical Aperture and Acceptance Angle 12.6 Types of Optical Fibers 12.7 Fabrication of Optical Fibers 12.8 Loss in Optical Fibers 12.9 Fiber Optical Communication 12.10 Splicing 12.11 Light Sources for Fiber Optics 12.12 Photodetectors 12.13 Fiber Optical Sensor 12.14 Classification of Optical Sensors 12.15 Fiber Endoscope 12.16 Engineering Applications of Optical Fibers Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 13. Crystal Structure 13.1 Introduction 13.2 Fundamental Terms of Crystallography 13.3 Types of Crystals 13.4 Relation Between The Interplanar Distance and The Interatomic Distance 13.5 Crystal Structures of Materials 13.6 Simple Cubic Crystal Structure 13.7 Body Centred Cubic Structure 13.8 Face Centred Cubic Structure or Cubic Close Packed Structure 13.9 Hexagonal Closed Packed Structure Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 14. Waves and Particles 14.1 Introduction 14.2 De Broglie Wave 14.3 De Broglie Wavelength 14.4 Properties of Matter Waves. 14.5 Matter Waves—Experimental Verification 14.6 Schrödinger Wave Equation 14.7 Application of Schrödinger’s Equation to a Particle in a Box 14.8 Heisenberg Uncertainty Principle Keypoints to Remember Solved Problems. Objectives Questions Exercises Short Questions Descriptive Questions Chapter 15. Semiconductors 15.1 Introduction 15.2 Classification of Solids on the Basis of Band Theory 15.3 Classification of Semiconductors 15.4 Solar Cells 15.5 Display Devices 15.6 Active Display Devices 15.7 Passive Display Devices 15.9 Different Modes of LCD 15.10 Liquid Crystal Display System 15.11 Comparison Between LEDs and LCDs 15.12 Applications Keypoints to Remember Solved Problems Objectives Questions Short Answer Questions Descriptive Questions Chapter 16. Electron Theory of Solids 16.1 Introduction 16.2 Electrical Conduction 16.3 Classification of Conducting Materials 16.4 Classical Free Electron Or Drude–Lorentz Theory of Metals 16.5 Expression For Electrical Conductivity and Drift Velocity 16.6 Thermal Conductivity 16.7 Expression For Thermal Conductivity 16.8 Wiedemann–Franz Law 16.9 Verification of Ohm’s Law 16.10 Classical Free Electron Theory: Advantages and Drawbacks Keypoints to Remember Solved Problems Objectives Questions Short Questions Descriptive Questions 16. Chapter 17. Statistics and Band Theory of Solids 17.1 Introduction 17.2 Fermi-Dirac Statistics 17.3 Carrier Concentration (Free Electron Density) in Metals 17.4 Effect of Temperature on Fermi Energy Function 17.5 Significance of Fermi Energy 17.6 Effective Mass of an Electron 17.7 Concept of Hole 17.8 Band theory of Solids – Origin of Energy Gap 17.9 Conductivity of Copper and Aluminum 17.10 Effect of Temperature and Impurity on Electrical Resistivity of Metals (Matthiessen’s Rule) Keypoints to Remember Solved Problems Objectives Type Questions Exercises Short Questions Descriptive Questions Chapter 18. Transport Properties of Semiconductorss 18.1 Introduction 18.2 Carrier Concentration in an Intrinsic Semiconductor 18.3 Conductivity of Semiconductors 18.4 Extrinsic Semiconductor 18.5 n-type semiconductor 18.6 p-type Semiconductor 18.7 Hall Effect 18.8 Variation of Electrical Conductivity with Temperature 18.9 Variation of Fermi Level with Temperature in Extrinsic Semiconductor Keypoints to Remember Solved Problems Objectives Questions Exercises Short Questions Descriptive Questions Chapter 19. Superconducting Material 19.1 Introduction 19.2 General Propertiess of Superconducting Materials 19.3 Types of Superconductors 19.4 Bardeen, Cooper and Schrieffer (BCS) Theory 19.5 Electron–Phonon Interaction 19.6 High Temperature Superconductors 19.7 Applications Keypoints to Remember Solved Problems Objectives Questions Short Questions Descriptive Questions Chapter 20. Magnetic Materials 20.1 Introduction 20.2 Magnetic Parameters 20.3 Bohr Magneton 20.4 Classification of Magnetic Materials 20.5 Origin of Permanent Magnetic Moment 20.6 Diamagnetism 20.7 Paramagnetism 20.8 Ferromagnetic Materials 20.9 Antiferromagnetic Materials 20.10 Ferrimagnetic Materials 20.11 Hard and Soft Magnetic Materials 20.12 Energy Product of Magnetic Matersials 20.13 Ferrite Core Memory 20.14 Magnetic Recording Materials 20.15 Magnetic Principle of Analog Recording and Recording 20.16 Magnetic Bubble Memory 20.17 Magnetic Principle in Computer Data Storage 20.18 Magnetic Tape 20.19 Floppy Disk 20.20 Magnetic Hard Disk 20.21 Computer Aided Tomography Keypoints to Remember Solved Problems Objectives Questions Exercises Short−Answer Questions Descriptive Questions Chapter 21. Dielectric Materials 21.1 Introduction 21.2 Definitions 21.3 Different Types of Polarisations 21.4 Local or Internal Field 21.5 Types of Dielectric Materials 21.6 Classification of Electrical Insulating Materials 21.7 Claussius-Mosotti Equation 21.8 Experimental Determination of Dielectric Constant 21.9 Dielectric Loss 21.10 Dielectric Breakdown 21.11 Ferroelectric Material 21.12 Dielectric Properties 21.13 Active and Passive Dielectrics 21.14 Frequency and Temperature Dependence of Dielectric Properties 21.15 Uses of Dielectric MateRials 21.16 Application Keypoints to Remember Solved Problems One Mark Question Exercises Short Questions Descriptive Questions Chapter 22. Shape Memory Alloys 22.1 Introduction 22.2 Origin of Shape Memory Alloys 22.3 Principle of Phase Transformation in Shape Memory Alloys 22.4 Shape Memory Alloys—Properties 22.5 Processing Techniques 22.6 Characterisation Techniques 22.7 Commercial Shape Memory Alloys 22.8 Shape Memory Alloys-Applications 22.9 Shape Memory Alloys-Disadvantages Keypoints to Remember Objectives Questions Short Questions Descriptive Questions Chapter 23. Nonlinear Materials 23.1 Introduction 23.2 Basic Principle 23.3 Classification of Nonlinear Materials 23.4 Nonlinear Properties 23.5 Nonlinear Materials 23.6 Applications Keypoints to Remember Objectives Questions Short Questions Descriptive Questions Chapter 24. Metallic Glasses 24.1 Introduction 24.2 Origin of Metallic Glasses 24.3 Principle 24.4 Preparation 24.5 Properties 24.6 Applications Keypoints to Remember Objectives Questions Short−Answer Questions Descriptive Questions Chapter 25. Biomaterials 25.1 Introduction 25.2 Biomechanism 25.3 Development of Biomaterials 25.4 Classification of Biomaterials 25.5 Processing and Properties 25.6 Applications Keypoints to Remember Objectives Questions Short Questions Descriptive Questions Chapter 26. Nanomaterial Synthesis 26.1 Introduction 26.2 Synthesis of Nanostructured Materials 26.3 Top-Down Approach-Nanomaterials Synthesis 26.4 Bottom Up Process—Synthesis of Nanoparticles 26.5 Vapour Phase Deposition 26.6 Epitaxial Techniques—Synthesis of Nanomaterials 26.7 Chemical Methods—Nanomaterial Synthesis 26.8 Hybrid Methods—Synthesis of Nanomaterials 26.9 Nanotechnology and Environment 26.10 Properties and Possible Applications 26.11 Storage Keypoints to Remember One Mark Question Short Questions Descriptive Questions Chapter 27. Nanodevices 27.1 Introduction 27.2 Nanomagnets 27.3 Classifications of Nanomagnetic Materials 27.4 Magneto Resistances 27.5 Probing Nanomagnetic Materials 27.6 Nanomagnetism in Technology 27.7 Applications of Semiconductor Nanostructures and Devices 27.8 Applications of Semiconductor Nanostructure 27.9 Organic Semiconductor Materials Devices 27.10 Carbon Nanotubes 27.11 Types of Carbon Nanotubes 27.12 Synthesis of Carbon Nanotubes 27.13 Properties of CNT 27.14 Applications Keypoints to Remember Objectives Questions Short Questions Descriptive Questions Appendix 1 Appendix 2 Appendix 3 Appendix 4