دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Emmanuel Raj
سری:
ISBN (شابک) : 1800562888, 9781800562882
ناشر: Packt Publishing
سال نشر: 2021
تعداد صفحات: 370
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Engineering MLOps: Rapidly build, test, and manage production-ready machine learning life cycles at scale به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب MLOs مهندسی: ساخت سریع، آزمایش و مدیریت چرخه های زندگی یادگیری ماشینی آماده تولید در مقیاس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با مدیریت چرخه زندگی یادگیری ماشین راهاندازی کنید و MLOs را در سازمان خود پیادهسازی کنید
MLOps یک رویکرد سیستماتیک برای ساخت، استقرار و نظارت بر راهحلهای یادگیری ماشین (ML) است. این یک رشته مهندسی است که می تواند در صنایع مختلف و موارد استفاده کاربرد داشته باشد. این کتاب بینشهای جامعی را در مورد MLOها همراه با مثالهای واقعی ارائه میکند تا به شما در نوشتن برنامهها، آموزش مدلهای قوی و مقیاسپذیر ML، و ایجاد خطوط لوله ML برای آموزش و استقرار مدلها به طور ایمن در تولید کمک کند.
کتاب شروع میشود. با آشنایی شما با گردش کار MLOps تا بتوانید شروع به نوشتن برنامه هایی برای آموزش مدل های ML کنید. سپس به بررسی گزینههایی برای سریالسازی و بستهبندی مدلهای ML پس از آموزش میپردازید تا آنها را برای تسهیل استنتاج یادگیری ماشینی، قابلیت همکاری مدل، و قابلیت ردیابی مدل سرتاسری به کار ببرید. شما نحوه ایجاد خطوط لوله ML، خطوط لوله یکپارچه سازی و تحویل مداوم (CI/CD) و نظارت بر خطوط لوله را برای ساختن، استقرار، نظارت و کنترل راه حل های ML برای مشاغل و صنایع به طور سیستماتیک درک خواهید کرد. در نهایت، دانشی را که به دست آورده اید برای ساختن پروژه های دنیای واقعی به کار می گیرید.
در پایان این کتاب ML، دید 360 درجه ای از MLO ها خواهید داشت و آماده اجرای آن خواهید بود. MLO ها در سازمان شما.
این کتاب MLOps برای دانشمندان داده، مهندسان نرمافزار، مهندسان DevOps، مهندسان یادگیری ماشین و رهبران کسبوکار و فناوری است که میخواهند سیستمهای ML را در تولید با استفاده از اصول و تکنیکهای MLOps بسازند، مستقر کنند و حفظ کنند. برای شروع کار با این کتاب، دانش اولیه یادگیری ماشین ضروری است.
Get up and running with machine learning life cycle management and implement MLOps in your organization
MLOps is a systematic approach to building, deploying, and monitoring machine learning (ML) solutions. It is an engineering discipline that can be applied to various industries and use cases. This book presents comprehensive insights into MLOps coupled with real-world examples to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production.
The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll understand how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitoring pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects.
By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.
Cover Title Page Copyright and Credits Contributors Table of Contents Preface Section 1: Framework for Building Machine Learning Models Chapter 1: Fundamentals of an MLOps Workflow The evolution of infrastructure and software development The rise of machine learning and deep learning The end of Moore\'s law AI-centric applications Software development evolution Traditional software development challenges Trends of ML adoption in software development Understanding MLOps Concepts and workflow of MLOps Discussing a use case Summary Chapter 2: Characterizing Your Machine Learning Problem The ML solution development process Types of ML models Learning models Hybrid models Statistical models HITL models Structuring your MLOps Small data ops Big data ops Hybrid MLOps Large-scale MLOps An implementation roadmap for your solution Phase 1 – ML development Phase 2 – Transition to operations Phase 3 – Operations Procuring data, requirements, and tools Data Requirements Tools and infrastructure Discussing a real-life business problem Summary Chapter 3: Code Meets Data Business problem analysis and categorizing the problem Setting up the resources and tools Installing MLflow Azure Machine Learning Azure DevOps JupyterHub 10 principles of source code management for ML What is good data for ML? Data preprocessing Data quality assessment Calibrating missing data Label encoding New feature – Future_weather_condition Data correlations and filtering Time series analysis Data registration and versioning Toward the ML Pipeline Feature Store Summary Chapter 4: Machine Learning Pipelines Going through the basics of ML pipelines Data ingestion and feature engineering Data ingestion (training dataset) Machine learning training and hyperparameter optimization Support Vector Machine Random Forest classifier Model testing and defining metrics Testing the SVM classifier Testing the Random Forest classifier Model packaging Registering models and production artifacts Registering production artifacts Summary Chapter 5: Model Evaluation and Packaging Model evaluation and interpretability metrics Learning models\' metrics Hybrid models\' metrics Statistical models\' metrics HITL model metrics Production testing methods Batch testing A/B testing Stage test or shadow test Testing in CI/CD Why package ML models? Portability Inference Interoperability Deployment agnosticity How to package ML models Serialized files Packetizing or containerizing Microservice generation and deployment Inference ready models Connecting to the workspace and importing model artifacts Loading model artifacts for inference Summary Section 2: Deploying Machine Learning Models at Scale Chapter 6: Key Principles for Deploying Your ML System ML in research versus production Data Fairness Interpretability Performance Priority Understanding the types of ML inference in production Deployment targets Mapping the infrastructure for our solution Hands-on deployment (for the business problem) Deploying the model on ACI Deploying the model on Azure Kubernetes Service (AKS) Deploying the service using MLflow Understanding the need for continuous integration and continuous deployment Summary Chapter 7: Building Robust CI-CD Pipelines Continuous integration, delivery, and deployment in MLOps Continuous integration Continuous delivery Continuous deployment Setting up a CI-CD pipeline and the test environment (using Azure DevOps) Creating a service principal Installing the extension to connect to the Azure ML workspace Setting up a continuous integration and deployment pipeline for the test environment Connecting artifacts to the pipeline Setting up a test environment Pipeline execution and testing Pipeline execution triggers Summary Chapter 8: APIs and Microservice Management Introduction to APIs and microservices What is an Application Programming Interface (API)? Microservices The need for microservices for ML Hypothetical use case Stage 1 – Proof of concept (a monolith) Stage 2 – Production (microservices) Old is gold – REST API-based microservices Hands-on implementation of serving an ML model as an API API design and development Developing a microservice using Docker Testing the API Summary Chapter 9: Testing and Securing Your ML Solution Understanding the need for testing and securing your ML application Testing your ML solution by design Data testing Model testing Pre-training tests Post-training tests Hands-on deployment and inference testing (a business use case) Securing your ML solution by design Types of attacks Summary Chapter 10: Essentials of Production Release Setting up the production infrastructure Azure Machine Learning workspace Azure Machine Learning SDK Setting up our production environment in the CI/CD pipeline Testing our production-ready pipeline Configuring pipeline triggers for automation Setting up a Git trigger Setting up an Artifactory trigger Setting up a Schedule trigger Pipeline release management Toward continuous monitoring Summary Section 3: Monitoring Machine Learning Models in Production Chapter 11: Key Principles for Monitoring Your ML System Understanding the key principles of monitoring an ML system Model drift Model bias Model transparency Model compliance Explainable AI Monitoring in the MLOps workflow Understanding the Explainable Monitoring Framework Monitor Analyze Govern Enabling continuous monitoring for the service Summary Chapter 12: Model Serving and Monitoring Serving, monitoring, and maintaining models in production Exploring different modes of serving ML models Serving the model as a batch service Serving the model to a human user Serving the model to a machine Implementing the Explainable Monitoring framework Monitoring your ML system Analyzing your ML system Governing your ML system Summary Chapter 13: Governing the ML System for Continual Learning Understanding the need for continual learning Continual learning The need for continual learning Explainable monitoring – governance Alerts and actions Model QA and control Model auditing and reports Enabling model retraining Manual model retraining Automated model retraining Maintaining the CI/CD pipeline Summary Why subscribe? About Packt Other Books You May Enjoy Index