دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: E. Rukmangadachari
سری:
ISBN (شابک) : 9788131784952
ناشر: Pearson Education
سال نشر: 2012
تعداد صفحات: 601
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب Engineering Mathematics: Volume - 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات مهندسی: جلد - 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover About the Author Contents Preface Chapter 1: Eigenvalues and Eigenvectors 1.1 Introduction 1.1.1 Matrix Polynomial 1.2 Linear Transformation 1.3 Characteristic Value Problem 1.3.1 Characteristic Equation of Matrix A 1.3.2 Spectrum of A 1.3.3 Procedure for Finding Eigenvalues and Eigenvectors Exercise 1.1 1.4 Properties of Eigenvalues and Eigenvectors 1.4.1 Characteristic Polynomial Pn 1.5 Cayley–Hamilton Theorem 1.5.1 Inverse of a Matrix by Cayley–Hamilton Theorem Exercise 1.2 1.6 Reduction of a Square Matrix to Diagonal Form 1.6.1 Diagonalisation—Powers of a Square Matrix A 1.6.2 Modal Matrix and Spectral Matrix of a Square Matrix A 1.6.3 Similarity of Matrices 1.6.4 Diagonalisation—Conditions for Diagonalisability of a Matrix A 1.6.5 Orthogonalisation of a Symmetric Matrix 1.7 Powers of a Square Matrix A— Finding of Modal Matrix P and Inverse Matrix A−1 1.7.1 Solution over the Complex Field—Eigenvectors of a Real Matrix Over Complex Field Exercise 1.3 Chapter 2: Quadratic Forms 2.1 Introduction 2.2 Quadratic Forms 2.2.1 Quadratic Form: Definition 2.3 Canonical Form (or) Sum of the Squares Form 2.3.1 Index and Signature of a Real Quadratic Form 2.4 Nature of Real Quadratic Forms 2.4.1 Positive Definite 2.4.2 Negative Definite 2.4.3 Positive Semi-Definite 2.4.4 Negative Semi-Definite 2.4.5 Indefinite 2.5 Reduction of a Quadratic Form to Canonical Form 2.6 Sylvestor’s Law of Inertia 2.7 Methods of Reduction of a Quadratic Form to a Canonical Form 2.7.1 Diagonalisation (by Simultaneous Application of Row and Column Transformations) 2.7.2 Orthogonalisation 2.7.3 Lagrange’s Method of Reduction (Completing Squares) 2.8 Singular Value Decomposition of a Matrix Exercise 2.1 Chapter 3: Solution of Algebraic and Transcendental Equations 3.1 Introduction to Numerical Methods 3.2 Errors and their Computation 3.2.1 Exact and Approximate Numbers 3.2.2 Significant Digits 3.2.3 Loss of Significant Digits 3.2.4 Rounding off 3.2.5 Rules for Rounding off 3.2.6 Absolute, Relative and Percentage Errors 3.3 Formulas for Errors 3.3.1 Relative Error 3.3.2 Error Bound for ã 3.3.3 Error Propagation 3.3.4 Error in Rounding 3.3.5 Programming Errors 3.3.6 Errors of Numerical Results 3.4 Mathematical Pre-requisites 3.5 Solution of Algebraic and Transcendental Equations 3.3.1 Introduction 3.3.2 Zero or Root of a Function 3.6 Direct Methods of Solution 3.6.1 Descartes’ 4 Rule of Signs 3.7 Numerical Methods of Solution of Equations of the Form f(x) = 0 3.7.1 Fixed Point Iteration (Successive Approximation) Method 3.7.2 Bolzano’s5 (Bisection or Interval-Halving) Method 3.7.3 Newton–Raphson6 Method 3.7.4 Secants Method (or Chords Method) 3.7.5 Method of False Position (Regula Falsi) Exercise 3.1 Chapter 4: Interpolation 4.1 Introduction 4.1.1 Formula for Errors in Polynomial Interpolation 4.2 Interpolation with Equal Intervals 4.2.1 Finite Differences 4.2.2 Forward (Advancing) Difference Operator 4.2.3 Properties Satisfied by 4.2.4 Backward Difference Operator 4.3 Symbolic Relations and Separation of Symbols 4.3.1 Factorial Function 4.3.2 The Enlargement or Displacement or Shift Operator E 4.3.3 The Relations between Exercise 4.1 4.4 Interpolation 4.4.1 The Differential Operator D: Relation between 4.5 Interpolation Formulas for Equal Intervals 4.5.1 Newton1–Gregory2 Forward Interpolation Formula 4.5.2 Newton–Gregory Backward Interpolation Formula Exercise 4.2 4.6 Interpolation with Unequal Intervals 4.4.1 Divided Differences 4.4.2 Divided Differences: Notation 4.7 Properties Satisfied by 4.7.1 Linearity Property 4.7.2 Symmetrical Property 4.7.3 Vanishing of (n + 1) Divided Differences 4.7.4 Special Case: Equally spaced Divided Differences 4.8 Divided Difference Interpolation Formula 4.8.1 Newton’s Divided Difference Formula 4.8.2 Sheppard’s3 Zig-Zag Rule 4.8.3 Lagrange’s4 Formula for Unequal Intervals 4.9 Inverse Interpolation Using Lagrange’s Interpolation Formula 4 .10 Central Difference Formulas 4.10.1 Gauss’s5 Interpolation Formulae 4.10.2 Stirling’s6 Formula 4.10.3 Bessel7 Formula Exercise 4.3 Chapter 5: Curve Fitting 5.1 Introduction 5.1.1 Curve Fitting: Method of Least Squares 5.1.2 Some Standard Approximating Curves 5.2 Curve Fitting by the Method of Least Squares 5.2.1 Least Squares Straight Line Fit or Linear Regression 5.2.2 Least Squares Parabolic (Quadratic) Curve 5.2.3 Nonlinear Curves 5.3 Curvilinear (or Nonlinear) Regression 5.3.1 Polynomial Regression 5.3.2 Transcendental Curves 5.4 Curve Fitting by a Sum of Exponentials 5.5 Weighted Least Squares Approximation 5.5.1 Linear Weighted Least Squares Approximation 5.5.2 Nonlinear Weighted Least Squares Approximation Exercise 5.1 Chapter 6: Numerical Differentiation and Integration 6.1 Introduction 6.1.1 Numerical Differentiation 6.1.2 Numerical Differentiation by Newton’s Forward Interpolation Formula 6.1.3 Numerical Differentiation by Newton’s Backward Interpolation Formula 6.1.4 Numerical Differentiation by Stirling’s Formula 6.2 Errors in Numerical Differentiation 6.2.1 Truncation Error 6.2.2 Rounding Error 6.3 Maximum and Minimum Values of a Tabulated Function Exercise 6.1 6.4 Numerical Integration: Introduction 6.4.1 Newton−Cotes Quadrature Formula 6.4.2 Trapezoidal Rule 6.4.3 Simpson’s1 13 Rule 6.4.4 Simpson’s 38 Rule 6.4.5 Boole’s2 Rule 6.4.6 Weddle’s3 Rule Exercise 6.2 6.5 Cubic Splines 6.5.1 Interpolation by Spline Functions 6.5.2 Numerical Differentiation: Cubic Spline Method 6.5.3 Numerical Integration: Cubic Spline Method 6.6 Gaussian Integration Exercise 6.3 Chapter 7: Numerical Solution of Ordinary Differential Equations 7.1 Introduction 7.1.1 Ordinary Differential Equation 7.1.2 Initial or Boundary Value Problem 7.2 Methods of Solution 7.2.1 Method 1: Taylor’s Series Method 7.2.2 Method 2: Picard’s Method of Successive Approximations 7.2.3 Method 3: Euler’s Method 7.2.4 Method 4: Euler’s Modified Method or Heun’s Method 7.2.5 Method 5: Runge1–Kutta2 Methods 7.3 Predictor–Corrector Methods 7.3.1 Introduction 7.3.2 Milne–Simpson’s Method 7.3.3 Adams–Bashforth–Moulton (ABM) Method Exercise 7.1 Chapter 8: Fourier Series 8.1 Introduction 8.2 Periodic Functions, Properties 8.2.1 Properties of Periodic Functions 8.3 Classifiable Functions—Even and Odd Functions 8.4 Fourier Series, Fourier Coefficients and Euler’s Formulae in (α , α +2π) 8.4.1 Determination of Fourier Coefficients 8.5 Dirichlet’s Conditions for Fourier Series Expansion of a Function 8.6 Fourier Series Expansions: Even/Odd Functions 8.6.1 Fourier Series of Odd and Even Functions in the Interval (−l, l ) 8.6.2 Fourier Series of Odd and Even Functions in the Interval (−π, π) 8.7 Simply-Defined and Multiply-(Piecewise) Defined Functions Exercise 8.1 8.8 Change of Interval: Fourier Series in Interval (α, α + 2l) 8.8.1 Fourier Series in any Arbitrary Interval (a, b) Exercise 8.2 8.9 Fourier Series Expansions of Even and Odd Functions in (−l, l ) Exercise 8.3 8.10 Half-Range Fourier Sine/Cosine Series: Odd and Even Periodic Continuations Exercise 8.4 8.11 Root Mean Square (RMS) Value of a Function 8.11.1 Parseval’s Formula 8.11.2 By Parseval’s Related Formulas Exercise 8.5 Chapter 9: Fourier Integral Transforms 9.1 Introduction 9.2 Integral Transforms 9.2.1 Laplace Transform 9.2.2 Fourier Transform 9.3 Fourier Integral Theorem 9.3.1 Fourier Sine and Cosine Integrals (FSI’s and FCI’s) 9.4 Fourier Integral in Complex Form 9.4.1 Fourier Integral Representation of a Function 9.5 Fourier Transform of f (x) 9.5.1 Fourier Sine Transform (FST) and Fourier Cosine Transform (FCT) 9.6 Finite Fourier Sine Transform and Finite Fourier Cosine Transform (FFCT) 9.6.1 FT, FST and FCT Alternative definitions 9.7 Convolution Theorem for Fourier Transforms 9.7.1 Convolution 9.7.2 Convolution Theorem 9.7.3 Relation between Laplace and Fourier Transforms 9.8 Properties of Fourier Transform 9.8.1. Linearity Property 9.8.2. Change of Scale Property or Damping Rule 9.8.3. Shifting Property 9.8.4. Modulation Theorem Exercise 9.1 9.9 Parseval’s Identity for Fourier Transforms 9.10 Parseval’s Identities for Fourier Sine and Cosine Transforms Exercise 9.2 Chapter 10: Partial Differential Equations 10.1 Introduction 10.2 Order, Linearity and Homogeneity of a Partial Differential Equation 10.2.1 Order 10.2.2 Linearity 10.2.3 Homogeneity 10.3 Origin of Partial Differential Equation 10.4 Formation of Partial Differential Equation by Elimination of Two Arbitrary Constants Exercise 10.1 10.5 Formation of Partial Differential Equations by Elimination of Arbitrary Functions Exercise 10.2 10.6 Classification of First-Order Partial Differential Equations 10.6.1 Linear Equation 10.6.2 Semi-Linear Equation 10.6.3 Quasi-Linear Equation 10.6.4 Nonlinear Equation 10.7 Classification of Solutions of First-Order Partial Differential Equation 10.7.1 Complete Integral 10.7.2 General Integral 10.7.3 Particular Integral 10.7.4 Singular Integral 10.8 Equations Solvable by Direct Integration Exercise 10.3 10.9 Quasi-Linear Equations of First Order 10.10 Solution of Linear, Semi-Linear and Quasi-Linear Equations 10.10.1 All the Variables are Separable 10.10.2 Two Variables are Separable 10.10.3 Method of Multipliers Exercise 10.4 10.11 Nonlinear Equations of First Order Exercise 10.5 10.12 Euler’s Method of Separation of Variables Exercise 10.6 10.13 Classification of Second-Order Partial Differential Equations 10.13.1 Introduction 10.13.2 Classification of Equations 10.13.3 Initial and Boundary Value Problems and their Solution 10.13.4 Solution of One-dimensional Heat Equation (or diffusion equation) 10.13.5 One-dimensional Wave Equation 10.13.6 Vibrating String with Zero Initial Velocity 10.13.7 Vibrating String with Given Initial Velocity and Zero Initial Displacement 10.13.8 Vibrating String with Initial Displacement and Initial Velocity 10.13.9 Laplace’s Equation or Potential Equation or Two-dimensional Steady-state Heat Flow Equation Exercise 10.7 Exercise 10.8 10.14 Two-dimensional Wave Equation Exercise 10.9 Chapter 11: Z-Transforms and Solution of Difference Equations 11.1 Introduction 11.2 Z-Transform: Definition 11.2.1 Two Special Sequences 11.2.2 Z-Transforms of Unit Step and Unit Impulse Sequences 11.3 Z-Transforms of Some Standard Functions (Special Sequences) 11.3.1. Unit Constant Sequence 11.3.2. Alternating Unit Constant Sequence 11.3.3. Geometric Sequence 11.3.4. Natural Number Sequence 11.3.5. Reciprocal Factorial Sequence 11.3.6. Power-Cum-Reciprocal Factorial Sequence 11.3.7. Binomial Coefficient Sequence 11.3.8. Power-Cum-Reciprocal Factorial Sequence with a Multiple 11.4 Recurrence Formula for the Sequence of a Power of Natural Numbers 11.5 Properties of Z-Transforms 11.5.1. Linearity 11.5.2. Change of Scale or Damping Rule 11.5.3. Shifting Property 11.5.4. Multiplication by n 11.5.5. Division by n 11.5.6. Initial Value Theorem 11.5.7. Final Value Theorem 11.5.8. Convolution Theorem Exercise 11.1 11.6 Inverse Z-Transform 11.6.1 Methods for Evaluation of Inverse Z-Transforms Exercise 11.2 11.7 Application of Z-Transforms: Solution of a Difference Equations by Z-Transform 11.7.1 Introduction 11.7.2 Difference Equation 11.7.3 Order of a difference equation 11.7.4 General Solution (Complete Solution) 11.7.5 Particular Solution (Particular Integral) 11.7.6 Linear Difference Equation 11.7.7 Complementary Function and Particular Integral 11.8 Method for Solving a Linear Difference Equation with Constant Coefficients 11.8.1 (A) Complementary Function 11.8.1 (B) Particular Integral 11.8.2 Short Methods for Finding the Particular Integral Exercise 11.3 Chapter 12: Special Functions 12.1 Introduction 12.2 Gamma Function 12.3 Recurrence Relation or Reduction Formula 12.3.1 Gamma Function for Negative Non-Integer Values 12.3.2 Some Standard Results 12.4 Various Integral Forms of Gamma Function 12.4.1 Form I: Integral of Log Function 12.4.2 Form II: Exponential Function 12.4.3 Form III: Scaling of Variable of Integration 12.4.4 Form IV: The Product of a Power Function and a Logarithmic Function 12.4.5 Form V: Product of a Power Function and an Exponential Function Exercise 12.1 12.5 Beta Function 12.5.1 Some Standard Results 12.6 Various Integral Forms of Beta Function 12.6.1 Form I: Beta Function as an Infinite Integral 12.6.2 Form II: Beta Function in Symmetric Integral Form 12.6.3 Form III: Improper Integral Form 12.6.4 Form IV: Integral from 0 to 1 Form 12.6.5 Form V: Integral from a to b Form 12.6.6 Form VI: Integral of Circular Functions 12.6.7 Form VII: Relation of Proportionality 12.6.8 Form VIII: Beta Function in Explicit Form 12.7 Relation Between Beta and Gamma Functions 12.8 Multiplication Formula 12.9 Legendre’s Duplication Formula 12.9.1 Dirichlet’s Integral Exercise 12.2 12.10 Legendre Functions 12.10.1 Introduction 12.10.2 Power Series Method of Solution of Linear Differential Equations 12.10.3 Existence of Series Solutions: Method of Frobenius 12.10.4 Legendre Functions 12.10.5 Legendre Polynomials Pn(x) 12.10.6 Generating Function for Legendre Polynomials Pn(x) 12.10.7 Recurrence Relations of Legendre Functions 12.10.8 Orthogonality of Functions 12.10.9 Orthogonality of Legendre Polynomials Pn(x) 12.10.10 Betrami’s Result 12.10.11 Christoffel’s Expansion 12.10.12 Christoffel’s Summation Formula 12.10.13 Laplace’s First Integral for Pn(x) 12.10.14 Laplace’s Second Integral for Pn(x) 12.10.15 Expansion of f x) in a Series of Legendre Polynomials Exercise 12.3 12.11 Bessel Functions 12.11.1 Introduction 12.11.2 Bessel Functions 12.11.3 Bessel Functions of Non-Integral Order p : J p(x) and J − p(x) 12.11.4 Bessel Functions of Order Zero and One: J0(x), J1 (x) 12.11.5 Bessel Function of Second Kind of Order Zero Y0(x) 12.11.6 Bessel Functions of Integral Order: Linear Dependence of Jn(x) and J −n(x) 12.11.7 Bessel Functions of the Second Kind of Order n: Yn(x): Determination of Second Solution Yn(x) by the Method of Variation of Parameters 12.11.8 Generating Functions for Bessel Functions 12.11.9 Recurrence Relations of Bessel Functions 12.11.10 Bessel’s Functions of Half- Integral Order 12.11.11 Differential Equation Reducible to Bessel’s Equation 12.11.12 Orthogonality Definition of orthogonality of functions 12.11.13 Integrals of Bessel Functions 12.11.14 Expansion of Sine and Cosine in Terms of Bessel Functions Exercise 12.4 Exercise 12.5 Chapter 13: Functions of a Complex Variable 13.1 Introduction 13.2 Complex Numbers–Complex Plane 13.2.1 Complex Function 13.2.2 Limit of a Function 13.2.3 Continuity at z0 13.2.4 Differentiability 13.2.5 Analytic Functions: Definition of Analyticity 13.2.6 Cauchy–Riemann Equations 13.2.7 Cauchy–Riemann Equations in Cartesian Coordinates 13.2.8 Cauchy–Riemann Equations in Polar Coordinates 13.2.9 Orthogonal Trajectories Exercise 13.1 Exercise 13.2 13.3 Laplace’s Equation: Harmonic and Conjugate Harmonic Functions 13.3.1 Harmonic and Conjugate Harmonic Functions Exercise 13.3 Chapter 14: Elementary Functions 14.1 Introduction 14.2 Elementary Functions of a Complex Variable 14.2.1 Exponential Function 14.2.2 Trigonometric Functions 14.2.3 Hyperbolic Functions 14.2.4 Logarithm 14.2.5 General powers of z: zα (α ∈ C) 14.2.6 Inverse Trigonometric (Circular) Functions and Inverse Hyperbolic Functions Exercise 14.1 Chapter 15: Complex Integration 15.1 Introduction 15.2 Basic Concepts 15.2.1 Simple Curve 15.2.2 Closed Curve 15.2.3 Smooth Curve or Arc 15.2.4 Contour 15.2.5 Simply-Connected Domain 15.2.6 Multiply-Connected Domain 15.3 Complex Line Integral 15.3.1 Definition of the Complex Line Integral 15.3.2 Properties 15.3.3 Relation Between Real and Complex Line Integrals 15.3.4 Evaluation of Complex Line Integral 15.3.5 Analytic Functions: Path Independence 15.3.6 Non-Analytic Functions: Path Dependence 15.4 Cauchy–Goursat Theorem 15.4.1 Alternative Statement of Cauchy’s Theorem 15.5 Cauchy’s Theorem for Multiply-Connected Domain 15.5.1 Basic Result: Integral of z = 1 Around 15.5.2 Integral of Integer Power of (z-a) Around Circle of Radius r 15.5.3 Evaluation of Complex Line Integral—Method 1 15.5.4 Value of Line Integral: Independence of Path 15.5.5 Integral of Non-Analytic Function: Dependence on Path of Integration 15.5.6 Bound for the Absolute Value of an Integral (ML-Inequality) 15.5.7 Verification and Application of C.I.T. 15.5.8 Non-Analytic Functions 15.5.9 Principle of deformation of path: 15.6 Cauchy’s Integral Formula (C.I.F.) or Cauchy’s Formula Theorem 15.6.1 Derivatives of Analytic Function (Cauchy’s Generalised Integral Formula) 15.6.2 Statement of Cauchy’s Generalised Integral Formula 15.7 Morera’s Theorem (Converse of Cauchy’s Theorem) 15.8 Cauchy’s Inequality Exercise 15.1 Chapter 16: Complex Power Series 16.1 Introduction 16.2 Sequences and Series 16.3 Power Series 16.4 Series of Complex Functions 16.5 Uniform Convergence of a Series of Functions 16.6 Weierstrass’s M-Test 16.7 Taylor’s Theorem (Taylor Series) 16.7.1 Important Special Taylor Series 16.8 Laurent’s Series 16.9 Higher Derivatives of Analytic Functions Exercise 16.1 Chapter 17: Calculus of Residues 17.1 Evaluation of Real Integrals 17.1.1 Introduction 17.1.2 Zeros and Singularities 17.1.3 Types of Singularities 17.1.4 Formulas for Residues at Poles 17.1.5 Cauchy’s Residue Theorem 17.1.6 Type I: Integrals of the Type 17.1.7 Type II: Integral of the Type 17.1.8 Type II (a): Improper Integrals Involving Trigonometric Functions 17.1.9 Jordan’s Lemma 17.1.10 Type III: Application of Jordan’s Lemma 17.1.11 Type IV: Poles on the Real Axis (Indentation) Exercise 17.1 Exercise 17.2 Exercise 17.3 Chapter 18: Argument Principle and Rouche’s Theorem 18.1 Introduction 18.2 Meromorphic Function 18.3 Argument Principle (Repeated Single Pole/Zero) 18.4 Generalised Argument Theorem 18.5 Rouche’s Theorem 18.6 Liouville Theorem 18.7 Fundamental Theorem of Algebra 18.8 Maximum Modulus Theorem for Analytic Functions Exercise 18.1 Chapter 19: Conformal Mapping 19.1 Introduction 19.1.1 Mapping f: z ã w 19.1.2 Conformal Mapping 19.2 Conformal Mapping: Conditions for Conformality 19.3 Conformal Mapping by Elementary Functions 19.3.1 General Linear Transformation 19.3.2 Inversion Transformation 19.4 Some Special Transformations 19.4.1 Transformation w = z2 19.4.2 Transformation w = zn 19.4.3 Transformation w = ez 19.4.4 Transformation w = sin z 19.4.5 Transformation w = cos z 19.4.6 Transformation w = sinh z 19.4.7 Transformation w = cosh z 19.4.8 Logarithm 19.4.9 Transformation w = z + 1/z (Joukowski1 Airfoil) 19.5 Bilinear or Mobius or Linear Fractional Transformations 19.6 Fixed Points of the Transformation Exercise 19.1 Question Bank Multiple Choice Questions Fill in the Blanks Match the Following True or Flase Statements Index