دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Babu Ram
سری:
ISBN (شابک) : 9788131733370, 9789332506541
ناشر: Pearson Education
سال نشر: 2010
تعداد صفحات: 555
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Engineering Mathematics II (Semester III) for UPTU به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات مهندسی II (ترم سوم) برای UPTU نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface Chapter 1: Functions of Complex Variables 1.1 Basic Concepts 1.2 Analytic Functions 1.3 Integration of Complex-Valued Functions 1.4 Power Series Representation of an Analytic Function 1.5 Zeros and Poles 1.6 Residues and Cauchy’s Residue Theorem 1.7 Evaluation of Real Definite Integrals 1.8 Conformal Mapping 1.9 Miscellaneous Examples Exercises Chapter 2: Elements of Statistics and Probability 2.1 Measures of Central Tendency 2.2 Measures of Variability (Dispersion) 2.3 Measures of Skewness 2.4 Measures of Kurtosis 2.5 Curve Fitting Least Square Line Approximation The Power Fit y = axm Least Square Parabola (Parabola of Best Fit) 2.6 Covariance 2.7 Correlation and Coefficient of Correlation 2.8 Regression 2.9 Angle Between the Regression Lines 2.10 Probability 2.11 Conditional Probability 2.12 Independent Events 2.13 Probability Distribution 2.14 Mean and Variance of a Random Variable 2.15 Binomial Distribution 2.16 Pearson’s Constants for Binomial Distribution 2.17 Poisson Distribution 2.18 Constants of the Poisson Distribution 2.19 Normal Distribution 2.20 Characteristics of the Normal Distribution 2.21 Normal Probability Integral 2.22 Areas Under the Standard Normal Curve 2.23 Fitting of Normal Distribution to a Given Data 2.24 Sampling 2.25 Level of Significance and Critical Region 2.26 Test of Significance for Large Samples 2.27 Confidence Interval for the Mean 2.28 Test of Significance for Single Proportion 2.29 Test of Significance for Difference of Proportion 2.30 Test of Significance for Difference of Means 2.31 Test of Significance for the Difference of Standard Deviations 2.32 Sampling with Small Samples 2.33 Significance Test of Difference Between Sample Means 2.34 Chi-Square Distribution 2.35 X2-Test as a Test of Goodness-of-Fit 2.36 Snedecor’s F-Distribution 2.37 Fisher’s Z-Distribution 2.38 Analysis of Variance (Anova) 2.39 Forecasting and Time Series Analysis 2.40 Statistical Quality Control 2.41 Miscellaneous Examples Exercises Chapter 3: Non-Linear Equations 3.1 Classification of Methods 3.2 Approximate Values of the Roots 3.3 Bisection Method (Bolzano Method) 3.4 Regula–Falsi Method 3.5 Convergence of Regula–Falsi Method 3.6 Newton–Raphson Method 3.7 Square Root of a Number Using Newton–Raphson Method 3.8 Order of Convergence of Newton–Raphson Method 3.9 Fixed Point Iteration 3.10 Convergence of Iteration Method 3.11 Square Root of a Number Using Iteration Method 3.12 Sufficient Condition for the Convergence of Newton–Raphson Method 3.13 Newton’s Method for Finding Multiple Roots 3.14 Newton–Raphson Method for Simultaneous Equations Exercises Chapter 4: Linear Systems of Equations 4.1 Direct Methods Matrix Inversion Method Gauss Elimination Method Jordan Modification to Gauss Method Triangularization (Triangular Factorization) Method Triangularization of Symmetric Matrix Crout’s Method 4.2 Iterative Methods for Linear Systems Jacobi Iteration Method Gauss–Seidel Method Convergence of Iteration Method 4.3 ILL-Conditioned System of Equations Exercises Chapter 5: Finite Differences and Interpolation 5.1 Finite Differences 5.2 Some More Examples of Finite Differences 5.3 Error Propagation 5.4 Numerical Unsatbility 5.5 Interpolation (A) Newton’s Forward Difference Formula (B) Newton’s Backward Difference Formula (C) Central Difference Formulae (C1) Gauss’s Forward Interpolating Formula: (C2) Gauss’s Backward Interpolation Formula: (C3) Stirling’s Interpolation Formula: (C4) Bessel’s Interpolation Formula (C5) Everett’s Interpolation Formula 5.6 Use of Interpolation Formulae 5.7 Interpolation with Unequal-Spaced Points (A) Divided Differences 5.8 Newton’s Fundamental (Divided Difference) Formula 5.9 Error Formulae 5.10 Lagrange’s Interpolation Formula 5.11 Error in Lagrange’s Interpolation Formula 5.12 Inverse Interpola Tion (A) Inverse Interpolation Using Newton’s Forward Difference Formula (B) Inverse Interpolation Using Everett’s Formula (C) Inverse Interpolation Using Lagrange’s Interpolation Formula Exercises Chapter 6: Numerical Differentiation 6.1 Centered Formula of Order O(h2 ) 6.2 Centered Formula of Order O(h2 ) 6.3 Error Analysis (A) Error for Centered Formula of Order O(h2 ) (B) Error for Centered Formula of Order O(h4 ) 6.4 Richardson’s Extrapolation 6.5 Central Difference Formula of Order O(h4 ) for fn(x) 6.6 General Method for Deriving Differentiation Formulae 6.7 Differentiation of a Function Tabulated in Unequal Intervals 6.8 Differentiation of Lagrange’s Polynomial 6.9 Differentiation of Newton Polynomial Exercises Chapter 7: Numerical Quadrature 7.1 General Quadrature Formula (A) Trapezoidal Rule: (B) Simpson’s One-Third Rule: (C) Simpson’s Three–Eight Rule: (D) Boole’s Rule: (E) Weddle’s Rule: 7.2 Cote’s Formulae 7.3 Error Term in Quadrature Formula Taylor’s Series Method for Finding Error 7.4 Richardson Extrapolation (or Deferred Approach to the Limit) 7.5 Simpson’s Formula with End Correction 7.6 Romberg’s Method Exercises Chapter 8: Ordinary Differential Equations 8.1 Initial Value Problems and Boundary Value Problems 8.2 Classification of Methods of Solution 8.3 Single-Step Methods 1. Taylor Series Method 2. Euler’s Method 3. Picard’s Method of Successive Integration 4. Heun’s Method 5. Runge–Kutta Method 6. Runge–Kutta Method for System of First Order Equations 7. Runge–Kutta Method for Higher Order Differential Equations Exercises Appendix Model Paper I Model Paper II Statistical Tables Index