دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Babu Ram
سری:
ISBN (شابک) : 9788131733363, 9789332506534
ناشر: Pearson Education
سال نشر: 2010
تعداد صفحات: 380
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Engineering Mathematics II (Semester II) for UPTU به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات مهندسی II (ترم دوم) برای UPTU نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface Syllabus Chapter 1: Preliminaries 1.1 Sets and Functions 1.2 Continuous and Piecewise Continuous Functions 1.3 Derivability of a Function and Piecewise Smooth Functions 1.4 The Riemann Integral 1.5 The Causal and Null Function 1.6 Functions of Exponential Order 1.7 Periodic Functions 1.8 Even and Odd Functions 1.9 Sequence and Series 1.10 Series of Functions 1.11 Partial Fraction Expansion of a Rational Function 1.12 Special Functions 1.13 The Integral Transforms Chapter 2: Differential Equations 2.1 Definitions and Examples 2.2 Formulation of Differential Equation 2.3 Solution of Differential Equation 2.4 Differential Equations of First Order 2.5 Separable Equations 2.6 Homogeneous Equations 2.7 Equations Reducible to Homogeneous Form 2.8 Linear Differential Equations 2.9 Equations Reducible to Linear Differential Equations 2.10 Exact Differential Equation 2.11 The Solution of Exact Differential Equation 2.12 Equations Reducible to Exact Equation 2.13 Applications of First Order and First Degree Equations 2.14 Linear Differential Equations 2.15 Solution of Homogeneous Linear Differential Equation with Constant Coefficients 2.16 Complete Solution of Linear Differential Equation with Constant Coefficients 2.17 Method of Variation of Parameters to Find Particular Integral 2.18 Differential Equations with Variable Coefficients 2.19 Simultaneous Linear Differential Equations with Constant Coefficients 2.20 Applications of Linear Differential Equations 2.21 Mass-Spring System 2.22 Simple Pendulum 2.23 Solution in Series 2.24 Bessel’s Equation and Bessel’s Function 2.25 Fourier-Bessel Expansion of a Continuous Function 2.26 Legendre’s Equation and Legendre’s Polynomial 2.27 Fourier–Legendre Expansion of a Function Exercises Chapter 3: Partial Differential Equations 3.1 Formulation of Partial Differential Equation 3.2 Solutions of a Partial Differential Equation 3.3 Non-linear Partial Differential Equations of the First Order 3.4 Charpit’s Method 3.5 Some Standard forms of Non-linear Equations 3.6 Linear Partial Differential Equations with Constant Coefficients 3.7 Classification of Second Order Linear Partial Differential Equations 3.8 The Method of Separation of Variables 3.9 Basic Partial Differential Equations 3.10 Solutions of Laplace Equation 3.11 Telephone Equations of a Transmission Line 3.12 Miscellaneous Example Exercises Chapter 4: Fourier Series 4.1 Trigonometric Series 4.2 Fourier (or Euler) Formulae 4.3 Periodic Extension of a Function 4.4 Fourier Cosine and Sine Series 4.5 Complex Fourier Series 4.6 Spectrum of Periodic Functions 4.7 Properties of Fourier Coefficients 4.8 Dirichlet’s Kernel 4.9 Integral Expression for Partial Sums of a Fourier Series 4.10 Fundamental Theorem (Convergence Theorem) of Fourier Series 4.11 Applications of Fundamental Theorem of Fourier Series 4.12 Convolution Theorem for Fourier Series 4.13 Integration of Fourier Series 4.14 Differentiation of Fourier Series 4.15 Examples of Expansions of Functions in Fourier Series 4.16 Method to Find Harmonics of Fourier Series of a Function from Tabular Values 4.17 Signals and Systems 4.18 Classification of Signals 4.19 Classification of Systems 4.20 Response of a Stable Linear Time Invariant Continuous Time System (LTC System) to a Piecewise Smooth and Periodic Input 4.21 Application to Differential Equations 4.22 Application to Partial Differential Equations 4.23 Miscellaneous Examples Exercises Chapter 5: Laplace Transform 5.1 Definition and Examples of Laplace Transform 5.2 Properties of Laplace Transforms 5.3 Limiting Theorems 5.4 Miscellaneous Examples Exercises Chapter 6: Inverse Laplace Transform 6.1 Definition and Examples of Inverse Laplace Transform 6.2 Properties of Inverse Laplace Transform 6.3 Partial Fractions Method to Find Inverse Laplace Transform 6.4 Heaviside’s Expansion Theorem 6.5 Series Method to Determine Inverse Laplace Transform 6.6 Convolution Theorem 6.7 Complex Inversion Formula 6.8 Miscellaneous Examples Exercises Chapter 7: Applications of Laplace Transform 7.1 Ordinary Differential Equations 7.2 Simultaneous Differential Equations 7.3 Difference Equations 7.4 Integral Equations 7.5 Integro-Differential Equations 7.6 Solution of Partial Differential Equation 7.7 Evaluation of Integrals 7.8 Miscellaneous Examples Exercises Appendix: Model Question Papers Model Paper I Model Paper II Index