دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: P. Sivaramakrishna Das, C. Vijayakumari سری: ISBN (شابک) : 9789332526419, 9789332568815 ناشر: Pearson Education سال نشر: 2016 تعداد صفحات: [761] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Engineering Mathematics II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات مهندسی II نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Dedications Roadmap to the Syllabus Contents Preface About the Authors Chapter 1: Vector Calculus 1.0 Introduction 1.1 Scalar and vector point functions 1.2 Differentiation formulae 1.3 Level surfaces 1.4 Gradient of a scalar point function or gradient of a scalar field 1.4.1 Vector differential operator 1.4.2 Geometrical meaning of ∇Ф 1.4.3 Directional derivative 1.4.4 Equation of tangent plane and normal to the surface 1.4.5 Angle between two surfaces at a common point 1.4.6 Properties of gradients Worked examples Exercise 1.1 1.5 Divergence of a vector point function or divergence of a vector field 1.5.1 Physical interpretation of divergence 1.6 Curl of a vector point function or curl of a vector field Worked examples Exercise 1.2 1.7 Vector identities Worked examples 1.8 Integration of vector functions 1.8.1 Line integral Worked examples Worked examples Exercise 1.3 1.9 Green’s theorem in a plane Worked examples 1.10 Surface integrals 1.10.1 Evaluation of surface integral 1.11 Volume integral Worked examples 1.12 Gauss divergence theorem Worked examples 1.13 Stoke’s theorem Worked examples Exercise 1.4 Part A Questions and Answers Chapter 2: Ordinary Differential Equations 2.0 Introduction 2.1 Linear differential equation with constant coefficients 2.1.1 Complementary function 2.1.2 Particular integral Type 1: Q(x) = eαx Worked examples Type 2: Q(x) = sin αx or cos αx Worked examples Type 3: Q(x) = xm, where m is a positive integer. Worked examples Type 4: Q(x) = eαx g(x) Type 5: Q(x) = xmcos αx or xmsin αx Worked examples Exercise 2.1 2.2 Linear differential equations with variable coefficients 2.2.1 Cauchy’s homogeneous linear differential equations Worked examples 2.2.2 Legendre’s linear differential equation Worked examples Exercise 2.2 2.3 Simultaneous linear differential equations with constant coefficients Worked examples Type I Type II Type III Exercise 2.3 2.4 Method of variation of parameters 2.4.1 Working rule Worked examples Exercise 2.4 Part A Questions and Answers Chapter 3: Laplace Transforms 3.0 Introduction 3.1 Condition for existence of Laplace transform 3.2 Laplace transform of some elementary functions 3.3 Some properties of Laplace transform Worked examples Worked examples Exercise 3.1 3.4 Differentiation and integration of transforms Worked examples Exercise 3.2 3.5 Laplace transform of derivatives and integrals Worked examples 3.5.1 Evaluation of improper integrals using Laplace transform Worked examples 3.6 Laplace transform of periodic functions and other special type of functions Worked examples Worked examples 3.6.1 Laplace transform of unit step function 3.6.2 Unit impulse function 3.6.3 Dirac-delta function 3.6.4 Laplace transform of delta function Worked examples Exercise 3.3 3.7 Inverse Laplace transforms Worked examples 3.7.1 Type 1 – Direct and shifting methods 3.7.2 Type 2 – Partial fraction method 3.7.3 Type 3 – 1. multiplication by s, 2. Division by s Worked examples 3.7.4 Type 4 – Inverse Laplace transform of logarithmic and trigonometric functions Worked examples Exercise 3.4 3.7.5 Type 5 – Method of convolution Worked examples Exercise 3.5 3.8 Application of Laplace transform to the solution of ordinary linear second order differential equations Worked examples Exercise 3.6 Part A Questions and Answers Chapter 4: Analytic Functions 4.0 Preliminaries 4.1 Function of a complex variable 4.1.1 Geometrical representation of complex function or mapping 4.1.2 Extended complex number system 4.1.3 Neighbourhood of a point and region 4.2 Limit of a function 4.2.1 Continuity of a function 4.2.3 Derivative of f(z) 4.2.4 Differentiation formulae 4.3 Analytic function 4.3.1 Necessary and sufficient condition for f(z) to be analytic 4.3.2 C-R equations in polar form Worked examples Exercise 4.1 4.4 Harmonic functions and properties of analytic function 4.4.1 Construction of an analytic function whose real or imaginary part is given. Milne-Thomson Method Worked examples Exercise 4.2 4.5 Conformal mapping 4.5.1 Angle of rotation 4.5.2 Mapping by elementary functions I. Translation w=z+b Worked examples II. The transformation w = αz Worked examples III. The Transformation w=1/z Worked examples IV. The Transformation w=z2 Worked examples (B) The Transformation w=z2 in polar form Worked examples V. The Transformation w=ez Worked examples Exercise 4.3 4.5.3 Bilinear transformation Worked examples Exercise 4.4 Part A Questions and Answers Chapter 5: Complex Integration 5.0 Introduction 5.1 Contour Integral 5.1.1 Properties of contour integrals Worked examples 5.1.2 Simply connected and multiply connected domains 5.2 Cauchy’s integral theorem or Cauchy’s fundamental theorem 5.2.1 Cauchy-Goursat integral theorem 5.3 Cauchy’s integral formula 5.3.1 Cauchy’s integral formula for derivatives Worked examples Exercise 5.1 5.4 Taylor’s series and Laurent’s series 5.4.1 Taylor’s series 5.4.2 Laurent’s series Worked examples Exercise 5.2 5.5 Classification of singularities 5.6 Residue 5.6.1 Methods of finding residue 5.7 Cauchy’s residue theorem 5.7.1 Working rule for detecting the type of singularity Worked examples Exercise 5.3 5.8 Application of residue theorem to evaluate real integrals 5.8.1 Type 1. Worked examples 5.8.2 Type 2. Worked examples 5.8.3 Type 3. Worked examples Exercise 5.4 Part A Questions and Answers Formulae to Remember Index