دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برق و مغناطیس ویرایش: 9 نویسندگان: William H. Hayt, Jr. and John A. Buck سری: ISBN (شابک) : 0078028159, 9780078028151 ناشر: McGraw-Hill Education سال نشر: 2018 تعداد صفحات: 605 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب مهندسی الکترومغناطیسی: الکترومغناطیسی
در صورت تبدیل فایل کتاب Engineering Electromagnetics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی الکترومغناطیسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
الکترومغناطیسی مهندسی، ویرایش نهم توسط ویلیام هایت و جان باک
Engineering Electromagnetics, 9th Edition by William Hayt and John Buck
Cover About the Authors Brief Contents Contents Preface Chapter 1: Vector Analysis 1.1 - Scalars and Vectors 1.2 - Vector Algebra 1.3 - The Rectangular Coordinate System 1.4 - Vector Components and Unit Vectors 1.5 - The Vector Field 1.6 - The Dot Product 1.7 - The Cross Product 1.8 - Other Coordinate Systems: Circular Cylindrical Coordinates 1.9 - The Spherical Coordinate System References Chapter 1 Problems Chapter 2: Coulomb's Law and Electric Field Intensity 2.1 - The Experimental Law of Coulomb 2.2 - Electric Field Intensity 2.3 - Field Arising From a Continuous Volume Charge Distribution 2.4 - Field of a Line Charge 2.5 - Field of a Sheet of Charge 2.6 - Streamlines and Sketches of Fields References Chapter 2 Problems Chapter 3: Electric Flux Density, Gauss's Law, and Divergence 3.1 - Electric Flux Density 3.2 - Gauss's Law 3.3 - Application of Gauss's Law: Some Symmetrical Charge Distributions 3.4 - Gauss's Law in Differential Form: Divergence 3.5 - Divergence Theorem References Chapter 3 Problems Chapter 4: Energy and Potential 4.1 - Energy Expended in Moving a Point Charge in an Electric Field 4.2 - The Line Integral 4.3 - Definition of Potential Difference and Potential 4.4 - The Potential Field of a Point Charge 4.5 - The Potential Field of a System of Charges: Conservative Property 4.6 - Potential Gradient 4.7 - The Electric Dipole 4.8 - Electrostatic Energy References Chapter 4 Problems Chapter 5: Conductors and Dielectrics 5.1 - Current and Current Density 5.2 - Continuity of Current 5.3 - Metallic Conductors 5.4 - Conductor Properties and Boundary Conditions 5.5 - The Method of Images 5.6 - Semiconductors 5.7 - The Nature of Dielectric Materials 5.8 - Boundary Conditions for Perfect Dielectric Materials References Chapter 5 Problems Chapter 6: Capacitance 6.1 - Capacitance Defined 6.2 - Parallel-Plate Capacitor 6.3 - Several Capacitance Examples 6.4 - Capacitance of a Two-Wire Line 6.5 - Using Field Sketches to Estimate Capacitance in Two-Dimensional Problems 6.6 - Poisson's and Laplace's Equations 6.7 - Examples of the Solution of Laplace's Equation 6.8 - Example of the Solution of Poisson's Equation: The P-N Junction Capacitance References Chapter 6 Problems Chapter 7: The Steady Magnetic Field 7.1 - Biot-Savart Law 7.2 - Ampere's Circuital Law 7.3 - Curl 7.4 - Stokes' Theorem 7.5 - Magnetic Flux and Magnetic Flux Density 7.6 - The Scalar and Vector Magnetic Potentials 7.7 - Derivation of the Steady-Magnetic-Field Laws References Chapter 7 Problems Chapter 8: Magnetic Forces, Materials, and Inductance 8.1 - Force on a Moving Charge 8.2 - Force on a Differential Current Element 8.3 - Force Between Differential Current Elements 8.4 - Force and Torque on a Closed Circuit 8.5 - The Nature of Magnetic Materials 8.6 - Magnetization and Permeability 8.7 - Magnetic Boundary Conditions 8.8 - The Magnetic Circuit 8.9 - Potential Energy and Forces on Magnetic Materials 8.10 - Inductance and Mutual Inductance References Chapter 8 Problems Chapter 9: Time-Varying Fields and Maxwell's Equations 9.1 - Faraday's Law 9.2 - Displacement Current 9.3 - Maxwell's Equations in Point Form 9.4 - Maxwell's Equations in Integral Form 9.5 - The Retarded Potentials References Chapter 9 Problems Chapter 10: Transmission Lines 10.1 - Physical Description of Transmission Line Propagation 10.2 - The Transmission Line Equations 10.3 - Lossless Propagation 10.4 - Lossless Propagation of Sinusoidal Voltages 10.5 - Complex Analysis of Sinusoidal Waves 10.6 - Transmission Line Equations and Their Solutions in Phasor Form 10.7 - Low-Loss Propagation 10.8 - Power Transmission and the Use of Decibels in Loss Characterization 10.9 - Wave Reflection at Discontinuities 10.10 - Voltage Standing Wave Ratio 10.11 - Transmission Lines of Finite Length 10.12 - Some Transmission Line Examples 10.13 - Graphical Methods: The Smith Chart 10.14 - Transient Analysis References Chapter 10 Problems Chapter 11: The Uniform Plane Wave 11.1 - Wave Propagation in Free Space 11.2 - Wave Propagation in Dielectrics 11.3 - Poynting's Theorem and Wave Power 11.4 - Propagation in Good Conductors 11.5 - Wave Polarization References Chapter 11 Problems Chapter 12: Plane Wave Reflection and Dispersion 12.1 - Reflection of Uniform Plane Waves at Normal Incidence 12.2 - Standing Wave Ratio 12.3 - Wave Reflection from Multiple Interfaces 12.4 - Plane Wave Propagation in General Directions 12.5 - Plane Wave Reflection at Oblique Incidence Angles 12.6 - Total Reflection and Total Transmission of Obliquely Incident Waves 12.7 - Wave Propagation in Dispersive Media 12.8 - Pulse Broadening in Dispersive Media References Chapter 12 Problems Chapter 13: Guided Waves 13.1 - Transmission Line Fields and Primary Constants 13.2 - Basic Waveguide Operation 13.3 - Plane Wave Analysis of the Parallel-Plate Waveguide 13.4 - Parallel-Plate Guide Analysis Using the Wave Equation 13.5 - Rectangular Waves 13.6 - Planar Dielectric Waveguides 13.7 - Optical Fiber References Chapter 13 Problems Chapter 14: Electromagnetic Radiation and Antennas 14.1 - Basic Radiation Principles: The Hertzian Dipole 14.2 - Antenna Specifications 14.3 - Magnetic Dipole 14.4 - Thin Wire Antennas 14.5 - Arrays of Two Elements 14.6 - Uniform Linear Arrays 14.7 - Antennas as Receivers References Chapter 14 Problems Appendix A: Vector Analysis A.1 - General Curvilinear Coordinates A.2 - Divergence, Gradient, and Curl in General Curvilinear Coordinates A.3 - Vector Identities Appendix B: Units Appendix C: Material Constants Appendix D: The Uniqueness Theorem Appendix E: Origins of the Complex Permittivity Appendix F: Answers to Odd-Numbered Problems Index Vector Differential Operations