دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, Christopher Mejía-Argueta سری: ISBN (شابک) : 0367685345, 9780367685348 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 283 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Engineering Analytics: Advances in Research and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل مهندسی: پیشرفت در تحقیقات و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل مهندسی در حال تبدیل شدن به یک مهارت ضروری برای هر مهندس است. حوزههایی مانند تحقیقات عملیات، شبیهسازی و یادگیری ماشینی را میتوان از طریق حجم عظیمی از دادهها کاملاً تغییر داد. این کتاب در نظر گرفته شده است که مقدمه ای بر تجزیه و تحلیل مهندسی باشد که می تواند برای بهبود ردیابی عملکرد، تقسیم بندی مشتری برای بهینه سازی منابع، الگوها و استراتژی های طبقه بندی و برج های کنترل لجستیک مورد استفاده قرار گیرد. روشهای اساسی در حوزههای تحلیل دیداری، توصیفی، پیشبینیکننده و تجویزی و دادههای بزرگ معرفی شدهاند. مطالعات موردی صنعتی و نمونههایی از نمایش مسئله در سراسر کتاب برای تقویت مفاهیم و کاربردها استفاده میشود. این کتاب در ادامه به تجزیه و تحلیل بصری و روابط آن، شبیهسازی از ابعاد مربوطه و یادگیری ماشین و هوش مصنوعی از دیدگاه پارادایمهای مختلف میپردازد. این کتاب برای متخصصانی که میخواهند روی مسائل تحلیلی کار کنند، برای دانشجویان مهندسی، محققان، مدیران ارشد فناوری و مدیرانی که در زمینهها و زمینههای مهندسی صنایع، علوم کامپیوتر، آمار، تحقیقات عملیات مهندسی برق و دادههای بزرگ کار میکنند در نظر گرفته شده است. .
Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.
Cover Half Title Title Page Copyright Page Table of Contents Preface Synopsis of Engineering Analytics Acknowledgments Editor Biographies Introduction References 1 Interactive Visualization to Support Data and Analytics-Driven Supply Chain Design Decisions 1.1 Introduction 1.2 Decision Making In Supply Chain Design 1.2.1 Characteristics of the Supply Chain Design Decision-Making Problem 1.2.2 Decision Making in the Context of Supply Chain Design 1.2.3 New Perspectives On Decision Making in Supply Chain Design 1.2.4 Synthesis 1.3 Interactive Visual Analytics In Supply Chain Design 1.4 Application to Practice 1.4.1 Distribution Network Design for a Multi-National Chemical Company 1.4.2 Supply Chain Design for a Multi-National Pharmaceutical Company 1.5 Conclusion and Future Research References 2 Resilience-Based Analysis of Road Closures in Colombia: An Unsupervised Learning Approach 2.1 Introduction 2.1.1 Problem Statement 2.2 Previous Related Works 2.3 Solution Approach for Resilience-Based Analysis of Road Closures 2.4 Road Networks Disruption Analysis 2.4.1 Pre-Processing 2.4.2 Modeling 2.4.3 Key Findings 2.5 Effects of Road Disruptions on Downstream Supply Chains 2.6 Conclusions Acknowledgements References 3 Characterization of Freight Transportation in Colombia Using the National Registry.... 3.1 Introduction 3.2 Methodology 3.2.1 Data Pre-Processing 3.2.2 Exploring the Potential of Data Through a Visualization Tool 3.2.3 Identification of Behavioral Patterns in Freight Transportation 3.3 Results 3.3.1 Pre-Processing of Information 3.3.2 Visualization and Characterization of Freight Transportation 3.3.2.1 Types of Vehicles 3.3.2.2 Main Origins and Destinations 3.3.2.3 Liquid Cargo and Solid Cargo 3.3.2.4 Routes With the Highest Cargo Flow 3.3.2.5 Most Transported Products 3.3.2.6 Variations in the Main Freight Transportation Variables 3.4 Conclusions References 4 Data and Its Implications in Engineering Analytics 4.1 Data is a Valuable Resource in Organizations 4.2 A Brief History of Data Analysis 4.3 Descriptive Analytics 4.4 Visual Analytics 4.5 Analytical Tools 4.6 Conclusions References 5 Assessing the Potential of Implementing Blockchain in Supply Chains Using Agent-Based Simulation and Deep Learning 5.1 Introduction 5.2 Basic Concepts 5.2.1 Supply Chain 5.2.2 Blockchain 5.2.3 Deep Learning 5.2.4 Simulation 5.2.4.1 Agent-Based Simulation 5.2.5 Summary of Agents, Deep Learning, and Blockchain 5.3 Problem Statement and Objective 5.4 Methodology and Framework 5.5 Case Study 5.6 Implementation 5.6.1 Current P2P Organization 5.6.2 Addition of IT Security System Modeled By Using Deep Learning 5.6.3 Addition of Blockchain 5.7 Results 5.8 Conclusions References 6 Market Behavior Analysis and Product Demand Prediction Using Hybrid Simulation Modeling 6.1 Understanding the Market And Estimating Product Demand 6.2 Markets, Complex Systems, Modeling, and Simulation 6.3 Using System Dynamics and Agent-Based Simulation to Estimate Car Demand 6.3.1 Modeling Market at the Aggregate Level (System Dynamics) 6.3.2 Modeling Market at the Disaggregate Level (Agent-Based) 6.3.3 Integration of Simulation Paradigms 6.3.4 Simulation Runs 6.3.5 Model Optimization 6.3.5.1 The Optimal Number of Simulation Runs 6.3.5.2 The Optimal Number of Agents 6.3.5 Model Validation and Sensitivity Analysis 6.4 Conclusions References 7 Beyond the Seaport: Assessing the Impact of Policies... 7.1 Introduction 7.2 Literature Review 7.2.1 International Container Transportation 7.2.2 Policymaking for Seaports 7.2.3 The Research Gap and Opportunity 7.3 Methodology 7.3.1 Process and Stakeholder’s Mapping 7.3.2 Secondary Data Collection 7.3.3 System Dynamics Model 7.3.4 Model Validation 7.4 Case Study: Jordan’s Container Transport Chain 7.4.1 Problem Description 7.4.2 Mapping the Process 7.4.3 The Conceptual Framework 7.4.4 Driving System Dynamics Into Practice: A Simulation Approach 7.5 Discussion and Analysis of Results 7.5.1 Status Quo 7.5.2 Results of Status Quo 7.5.3 Results for Multiple Scenarios 7.5.5 Simulation for a One-Year Period 7.5.6 Managerial Insights and Potential Policymaking 7.6 Conclusion and Future Research References 8 Challenges and Approaches of Data Transformation: Big Data in Pandemic... 8.1 Introduction 8.1.1 COVID-19 and Its Predecessors 8.1.2 Data Collection: Past and Now 8.2 Data And Methods 8.2.1 Data Inconsistencies 8.2.1.1 Data Release Without Verification 8.2.1.2 Poor Standardization of the Collected Data 8.2.1.3 File Format Change 8.2.2 Data Cleansing and Preparation for Analysis 8.2.2.1 Initial Inspection and Cleansing 8.2.2.2 Transitions Correction 8.2.3 Methods for Data Correction 8.2.3.1 K-Medoids 8.2.3.2 Silhouette Cluster Validity Index 8.2.3.3 Transition Matrix 8.3 Results 8.3.1 Confirmation of Transitions Through Dynamic Windows 8.3.2 Transition Probabilities 8.4 Discussion 8.4.1 Strategies for Improving Data Collection 8.4.1.1 Variable Definition 8.4.1.2 File Naming for Storage 8.4.1.3 File Type and Properties 8.4.1.4 Missing Data 8.4.2 Data Cleansing Techniques 8.5 Final Note References 9 An Agent-Based Methodology for Seaport Decision Making 9.1 Introduction 9.2 Complexity of the Decision-Making Environment In Seaports 9.3 The Need for a Methodology to Support Seaport Decision Making 9.4 Is Agent-Based Methodology the Key? 9.5 Specifying An Interaction/Communication Protocol In An Agent-Based Model 9.5.1 Properties of an Agent-Based Seaport Decision Maker 9.5.2 Multi-Agent Interaction and Communication Protocols 9.5.2.1 IEEE-FIPA 9.5.2.2 BSPL 9.5.3 The Knowledge/Epistemological Level of an Agent-Based Behavior 9.6 Future Research Directions 9.7 Conclusions References 10 Simulation and Reinforcement Learning Framework to Find Scheduling... 10.1 Introduction 10.2 Planning and Scheduling For Production Systems 10.2.1 Production Scheduling Environments 10.2.2 Integration of Operational and Executional Level 10.3 Learning Scheduling 10.3.1 Markov Decision Process 10.3.2 Learning and Scheduling of Jobs Framework 10.4 Illustrative Example 10.5 Conclusions Acknowledgments References 11 An Advanced Analytical Proposal for Sales and Operations Planning 11.1 Introduction 11.2 Background 11.3 Procedures 11.3.1 Predicting Sales 11.3.2 Model for Prescribing Decisions 11.4 Experiment 11.4.1 Using the Random Forest Regressor in Real Data 11.4.2 Using Real Data in a Reduced Supply Chain 11.5 Conclusions 11.6 Future Research APPENDIX 11A: Random Forest Regressor For The Required Forecasts APPENDIX 11B: Mixed-Integer Model For The S&Op Support 12 Deep Neural Networks Applied in Autonomous Vehicle Software Architecture 12.1 Introduction 12.2 Materials and Methods 12.2.1 Software Architecture 12.2.2 Convolutional Neural Networks 12.2.3 Convolutional Neural Networks Example 12.2.3.1 Training Workflow 12.3 Results for Autonomous Vehicles With Deep Neural Networks 12.3.1 Data Analysis 12.3.2 Pre-Processing and Data Augmentation 12.3.3 CNN Architecture 12.3.4 Autonomous Vehicle Implementation 12.4 Conclusion References 13 Optimizing Supply Chain Networks for Specialty Coffee 13.1 The Coffee Industry and Socio-Economic Costs for Coffee Farmers 13.2 Coffee Supply Chains and a Regional Look at Caldas, Colombia 13.2.1 Impact of the Coffee Production Characteristics On the Supply Chain 13.2.2 Shipping Coffee Overseas From Caldas, Colombia 13.3 Structuring the Coffee Supply Chain Network 13.3.1 Supply Chain Network Design 13.3.1.1 Model Formulation 13.3.2 Validating With a Case From Colombia: Café Botero 13.3.2.1 Validation Scenarios 13.3.2.2 Results of the Scenarios and Saving Opportunities 13.3.2.3 Recommendations for Café Botero 13.4 Active Steps Down the Supply Chain to Reduce Costs 13.5 Agenda for Future Research in Coffee Supply Chains References 14 Spatial Analysis of Fresh Food Retailers in Sabana Centro, Colombia 14.1 Introduction 14.2 Literature Review 14.2.1 Trends and Facts About Food Insecurity 14.2.2 The Link Between Accessibility, Availability, and Affordability 14.2.3 Coupling Supply and Demand for Fruits and Vegetables in Food Environments 14.2.4 Gaps and Contributions 14.3 Methodology 14.3.1 Data Collection 14.3.2 Conceptual Framework 14.3.2.1 Geographical Attributes 14.3.2.2 Demographic and Socio-Economic Characteristics 14.3.2.3 Retail Landscape 14.3.3 Data Modeling and Tools for Analysis 14.3.3.1 Catchment Areas and Buffer Rings 14.3.3.2 Hierarchical Clustering 14.3.3.3 Voronoi Diagrams 14.4 Results and Analysis 14.4.1 Preliminary Distribution Patterns 14.4.2 Socio-Economic Clustering Analysis 14.4.3 Demand and Supply Analysis 14.5 Conclusions References 15 Analysis of Internet of Things Implementations Using Agent-Based Modeling: Two Case Studies 15.1 Introduction 15.2 Related Work 15.3 Case Study 1 15.3.1 Simulation Model 15.3.2 Three Different Scenarios of the ABM 15.3.3 Conclusion 15.4 Case Study 2 15.4.1 Process Model 15.4.2 Simulation Model 15.4.2 ABM Results 15.4.4 The Return On Investment for the Project 15.4.5 Discussion References Index