دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ajeet Kumar Kaushik, Sandeep Kumar, Ganga Ram Chaudhary سری: Woodhead Publishing Series in Biomaterials ISBN (شابک) : 0128212403, 9780128212400 ناشر: Woodhead Publishing سال نشر: 2022 تعداد صفحات: 343 [345] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Engineered Nanostructures for Therapeutics and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوساختارهای مهندسی شده برای کاربردهای درمانی و زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانو ساختارهای مهندسی شده برای کاربردهای درمانی و زیستپزشکی یک مرجع واحد برای خوانندگان مختلف زیستپزشکی ارائه میکند تا در مورد کاربرد نانوتکنولوژی در زیستپزشکی و مهندسی زیستپزشکی، از پیشرفتهای گذشته تا تحقیقات فعلی و آینده اطلاعات کسب کنند. چشم انداز این کتاب مجموعه وسیعی از کاربردهای زیست پزشکی و درمانی برای نانوساختارها، از جمله تصویربرداری زیستی، نانورباتیک، ارتوپدی، و مهندسی بافت را ارائه میکند و یک رویکرد مفید و چند رشتهای را ارائه میدهد. هر فصل چالشهای پیش روی هر رشته از جمله عوامل محدودکننده، زیست سازگاری و سمیت را مورد بحث قرار میدهد، بنابراین خواننده را قادر میسازد تا در تحقیقات خود تصمیمات آگاهانه بگیرد. این کتاب مروری جامع و گسترده از نقش و اهمیت نانومواد و ترکیبات آنهاست که شامل بحث هایی در مورد جنبه های کلیدی در زمینه زیست پزشکی نیز می شود. این مورد برای دانشگاهیان و محققان در علوم و مهندسی مواد، زیست پزشکی و مهندسی زیست پزشکی، مهندسی شیمی، داروسازی، تصویربرداری زیستی و نانورباتیک مورد توجه قرار خواهد گرفت.
Engineered Nanostructures for Therapeutics and Biomedical Applications offers a single reference for a diverse biomedical readership to learn about the application of nanotechnology in biomedicine and biomedical engineering, from past developments to current research and future prospects. This book sets out a broad selection of biomedical and therapeutic applications for nanostructures, including bioimaging, nanorobotics, orthopedics, and tissue engineering, offering a useful, multidisciplinary approach. Each chapter discusses challenges faced in each discipline, including limiting factors, biocompatibility, and toxicity, thus enabling the reader to make informed decisions in their research. This book is a comprehensive, broad overview of the role and significance of nanomaterials and their composites that also includes discussions of key aspects in the field of biomedicine. It will be of significant interest to academics and researchers in materials science and engineering, biomedicine and biomedical engineering, chemical engineering, pharmaceutics, bioimaging, and nanorobotics.
Front Cover Engineered Nanostructures for Therapeutics and Biomedical Applications Copyright Page Contents List of contributors Preface 1 Engineered nanostructures: an introduction 1.1 Introduction 1.2 Role of nanotechnology in medical science 1.3 Types of nanostructures for medical applications 1.3.1 Nanoparticles 1.3.2 Magnetic nanoparticles 1.3.3 Metallic nanoparticles 1.3.4 Bimetallic nanoparticles 1.3.5 Metal oxide nanoparticles 1.3.6 Carbon nanomaterials 1.3.7 Graphene quantum dots 1.3.8 Graphene/graphene oxide 1.3.8.1 Carbon nanotubes 1.3.9 Nanowires 1.3.10 Semiconducting Si nanowires 1.3.11 Magnetic nanowires 1.3.12 Nanogels 1.3.13 Nanofibers 1.3.14 Nanocapsules 1.3.15 Metal-organic frameworks 1.4 Shape controlled engineered (hybrid) nanostructures for biomedical applications 1.4.1 Drug delivery 1.4.2 Diagnosis 1.4.3 Imaging 1.5 Challenges of therapeutic and biomedical applications 1.6 Conclusions Acknowledgment References 2 Fluorescent inorganic nanoparticles for bioimaging and therapeutic applications 2.1 Introduction 2.2 Fluorescent inorganic nanoparticles 2.2.1 Quantum dots 2.2.2 Upconversion nanoparticles 2.2.3 Metal nanoparticles 2.3 Fluorescent inorganic nanoparticles in bioimaging 2.3.1 Quantum dots for bioimaging 2.3.2 Upconversion nanoparticles for bioimaging 2.3.3 Metal nanoparticles for bioimaging 2.4 Fluorescent inorganic nanoparticles in therapy 2.4.1 Quantum dots for therapy 2.4.2 Upconversion nanoparticles for therapy 2.4.3 Metal nanoparticles for therapy 2.5 Conclusions Acknowledgments References 3 Quantum dots and conjugated metal-organic frameworks for targeted drug delivery and bioimaging of cancer 3.1 Introduction 3.2 Mechanics of quantum dot: A general architecture 3.3 Metal-organic framework: a dynamic coordination polymer 3.4 Designing strategy for QD@MOF nanocomposites 3.4.1 Encapsulation of quantum dots in metal-organic frameworks 3.4.2 Postsynthetic loading of quantum dots in metal-organic frameworks 3.4.3 Other synthesis methods 3.4.4 Photochemical patterning of QDs@MOFs 3.5 Different characterization techniques 3.6 Potential of QD@MOF composite for drug delivery 3.7 Multifunctional QD@MOF composites for bioimaging applications 3.8 Conclusion and future perspectives Acknowledgment References 4 Carbon-based nanogels as a synergistic platform for bioimaging and drug delivery 4.1 Introduction 4.2 Properties of C-hNgs 4.3 Classification of C-hNgs 4.3.1 pH-responsive C-hNgs 4.3.2 Glucose-responsive C-hNgs 4.3.3 Thermo-responsive C-hNgs 4.3.4 NIR light- and electro-responsive C-hNgs 4.3.5 Multi-responsive C-hNgs 4.4 Synthesis of carbon nanomaterial-functionalized carbon-based nanogels 4.4.1 Fabrication of carbon-dot-based hNgs 4.4.2 Fabrication of graphene oxide-based hNgs 4.4.3 Fabrication of fullerene-based hNgs 4.4.4 Fabrication of carbon nanotube-based hNgs 4.4.5 Fabrication of nanodiamond-based hNgs 4.5 Conclusion References 5 Graphene oxides and derivatives for biomedical applications: drug delivery/gene delivery, bioimaging, and therapeutics 5.1 Introduction 5.2 Graphene oxide and its derivatives 5.2.1 Synthesis of graphene oxide 5.2.1.1 Brodie’s oxidation method 5.2.1.2 Staudenmaier method 5.2.1.3 Hofmann method 5.2.1.4 Hummer’s method 5.2.1.5 Other methods 5.3 Characterization of graphene oxide 5.4 Derivatives of graphene oxide 5.5 Drug delivery/gene delivery 5.5.1 Polyethylene glycol-based surface functionalization of graphene oxide 5.5.2 Surface functionalization of graphene oxide with folic acid 5.5.3 Surface functionalization of graphene oxide polyethyleneimine 5.5.4 Surface functionalization of graphene oxide with chitosan 5.6 Bioimaging 5.6.1 Graphene oxide-based in vitro microplate bioimaging 5.6.2 Graphene oxide-based in vitro cellular bioimaging 5.6.3 Graphene oxide-based in vivo bioimaging 5.7 Graphene-based nanomaterials in bioimaging 5.7.1 Optical imaging 5.7.2 Fluorescence imaging 5.7.3 Two-photon fluorescence imaging 5.7.4 Raman imaging 5.7.5 Radionuclide-based imaging 5.7.6 Magnetic resonance imaging 5.7.7 Photoacoustic imaging 5.7.8 Computed tomography 5.7.9 Multimodal imaging 5.8 Theranostics 5.9 Conclusion References 6 Self-assembled polymeric nanostructures: a promising platform for bioimaging and therapeutic applications 6.1 Introduction 6.2 What is self-assembly? 6.3 Self-assembled polymeric nanostructures (SAPNs) 6.3.1 Advantages and mechanism for drug release of SAPNs 6.3.2 Nanogels (NGs) 6.3.2.1 Preparation 6.3.2.2 Biomedical applications of nanogels Nanogels for brain/neurodegenerative disease Nanogels for cardiovascular diseases Nanogels for diabetes management Nanogels for cancer therapy and bioimaging Nanogels for tissue engineering and gene therapy Nanogels for antiinflammatory drugs Nanogels for local anesthetics and pain management Nanogels for ophthalmic diseases 6.3.2.3 Recent developments and future perspectives 6.3.3 Nanospheres (NSs) 6.3.3.1 Preparation 6.3.3.2 Biomedical applications of nanospheres Nanospheres for tumor treatment Nanospheres against mononuclear phagocytic system Nanospheres for oral administration of drug Nanospheres and blood brain barrier for drug delivery Nanospheres for gene delivery Nanospheres for cutaneous applications 6.3.3.3 Recent developments and future prospects 6.3.4 Nanocapsules (NCs) 6.3.4.1 Preparation 6.3.4.2 Biomedical applications of nanocapsules Antibody-incorporated nanocapsules for drug delivery Nanocapsules for oral delivery MRI-guided nanocapsule system for theranostic applications Nanocapsule-based in vivo delivery of plasmids Nanocapsules as self-healing materials Self-assembled DNA-based nanocapsules for drug delivery Biomimetic hollow polymeric nanocapsules 6.3.4.3 Recent developments and future perspective 6.3.5 Polymeric micelles (PMs) 6.3.5.1 Preparation 6.3.5.2 Biomedical applications of polymeric micelles Polymeric micelles as polymer-drug conjugates Polymeric micelles as nanocontainers Polymeric micelles as solubilizing agents for the water-insoluble drugs Polymeric micelles with modified-release profile Polymeric micelles for tumor treatment via passive drug targeting Polymeric micelles for ocular drug delivery Polymeric micelles for delivery in brain 6.3.5.3 Recent developments and future perspective 6.3.6 Polymersomes (PoMs) 6.3.6.1 Preparation 6.3.6.2 Biomedical applications of polymersomes Polymersomes for medical imaging Polymersomes for cancer therapy Polymersomes as antibody-based delivery vectors Polymersomes as nanoreactors Polymersomes for artificial cells and organelles Polymersomes for Gene therapy Polymersomes for neurodegenerative diseases 6.3.6.3 Recent developments and future perspective 6.3.7 Liquid crystals (LCs) 6.3.7.1 Preparation 6.3.7.2 Biomedical applications of liquid crystals Liquid crystals for rapid diagnosis Liquid crystals for biomimicry Liquid crystals for high-density-lipoproteins testing in human serum Liquid crystals for ophthalmic lenses Liquid crystals for sperm testing Liquid crystals for dental fillings Liquid crystals for solubility enhancement Liquid crystals for drug delivery 6.3.7.3 Recent developments and future perspective 6.3.8 Dendrimers (DMs) 6.3.8.1 Preparation 6.3.8.2 Biomedical applications of dendrimers Dendrimers porters for anticancer drugs Dendrimers for transdermal drug delivery Dendrimers for gene delivery Dendrimers as imaging contrast agent Dendrimers used for enhancing solubility Dendrimer-based photodynamic therapy (PDT) Dendrimers as biomimics Dendrimers for oral drug delivery 6.3.8.3 Recent development and future perspectives References 7 Nanofibrous scaffolds for tissue engineering processes 7.1 Introduction 7.2 Self-assembly 7.2.1 β-Sheet-forming peptides 7.2.2 α-Helical-forming peptides 7.2.3 Peptide amphiphiles 7.3 Electrospinning 7.4 Phase separation 7.5 Perspective and future directions Acknowledgment References 8 Design and testing of nanobiomaterials for orthopedic implants Abbreviations 8.1 Introduction 8.2 Role of nanobiomaterials for orthopedic implants 8.3 Nanotechnology for tissue-engineered bones and nanoscaffolds for improved bone grafts and implants 8.3.1 Nano scaffolds for bone grafts and implants 8.3.1.1 Polymers 8.3.1.2 Ceramics 8.3.1.3 Carbon nanotubes and carbon nanofibers 8.3.1.4 Composite materials 8.3.1.5 Metal based nanoparticles in scaffolds and implants 8.3.2 Drug loaded scaffolds 8.4 Spinal implants 8.4.1 Nanotechnology for spinal fusion 8.4.2 Nanotechnology based implants for osteoporotic bones 8.5 Nanotechnology for fracture repair (internal fixation devices) 8.6 Nanotechnology for arthoplasty 8.7 Nanomaterials modified orthopedic implants for prevention of orthopedic infections 8.8 Nanotechnology driven implants for anticancer application in orthopedics 8.9 Future scopes and challenges References 9 Drug-releasing nano-bioimplants: from basics to current progress 9.1 Introduction 9.2 Classification of nano-bioimplants 9.2.1 Polymeric nano-bioimplants 9.2.1.1 Biodegradable polymeric implant 9.2.1.2 Non-biodegradable polymeric implant 9.2.2 Metallic nano-implants 9.2.3 Bio-ceramic nano-implants 9.3 Processing and characterization of bio-implants 9.4 Applications of nano-bioimplants 9.4.1 Orthopedic implants 9.4.2 Dental implants 9.4.3 Cardiovascular implants 9.4.4 Tissue regeneration 9.4.5 Cancer therapy 9.5 Impact of nano-bioimplants 9.6 Recent trends and challenges in nano-bioimplants 9.6.1 Additive manufacturing 9.7 Future aspects of nano-bioimplants 9.8 Conclusion References 10 Mobile nanorobotics for biomedical applications 10.1 Introduction 10.2 Nanorobots in diagnosis/sensing and detoxification 10.3 Nanorobots in drug delivery 10.4 Nanorobots in surgery 10.5 Biomolecular nanorobots 10.6 Conclusion, gaps, and future prospects Acknowledgment References 11 Opportunities, challenges, and future prospects of engineered nanostructures for therapeutics and biomedical applications 11.1 Nanobiotechnology and nanomedicine—a success story 11.2 Pitfalls and challenges 11.2.1 Biological challenges 11.2.1.1 Biological barriers and specific targeting 11.2.1.2 Incongruence between human disease and animal models 11.2.2 Technological challenges 11.2.2.1 Regulatory and pharmacological challenges 11.2.2.2 Challenges in scaling up and manufacturing 11.2.3 Other challenges 11.3 Future of engineered nanostructures in medicine References Index Back Cover