ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Engineered Nanostructures for Therapeutics and Biomedical Applications

دانلود کتاب نانوساختارهای مهندسی شده برای کاربردهای درمانی و زیست پزشکی

Engineered Nanostructures for Therapeutics and Biomedical Applications

مشخصات کتاب

Engineered Nanostructures for Therapeutics and Biomedical Applications

ویرایش:  
نویسندگان: , ,   
سری: Woodhead Publishing Series in Biomaterials 
ISBN (شابک) : 0128212403, 9780128212400 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 343
[345] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Engineered Nanostructures for Therapeutics and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوساختارهای مهندسی شده برای کاربردهای درمانی و زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوساختارهای مهندسی شده برای کاربردهای درمانی و زیست پزشکی



نانو ساختارهای مهندسی شده برای کاربردهای درمانی و زیست‌پزشکی یک مرجع واحد برای خوانندگان مختلف زیست‌پزشکی ارائه می‌کند تا در مورد کاربرد نانوتکنولوژی در زیست‌پزشکی و مهندسی زیست‌پزشکی، از پیشرفت‌های گذشته تا تحقیقات فعلی و آینده اطلاعات کسب کنند. چشم انداز این کتاب مجموعه وسیعی از کاربردهای زیست پزشکی و درمانی برای نانوساختارها، از جمله تصویربرداری زیستی، نانورباتیک، ارتوپدی، و مهندسی بافت را ارائه می‌کند و یک رویکرد مفید و چند رشته‌ای را ارائه می‌دهد. هر فصل چالش‌های پیش روی هر رشته از جمله عوامل محدودکننده، زیست سازگاری و سمیت را مورد بحث قرار می‌دهد، بنابراین خواننده را قادر می‌سازد تا در تحقیقات خود تصمیمات آگاهانه بگیرد. این کتاب مروری جامع و گسترده از نقش و اهمیت نانومواد و ترکیبات آنهاست که شامل بحث هایی در مورد جنبه های کلیدی در زمینه زیست پزشکی نیز می شود. این مورد برای دانشگاهیان و محققان در علوم و مهندسی مواد، زیست پزشکی و مهندسی زیست پزشکی، مهندسی شیمی، داروسازی، تصویربرداری زیستی و نانورباتیک مورد توجه قرار خواهد گرفت.


توضیحاتی درمورد کتاب به خارجی

Engineered Nanostructures for Therapeutics and Biomedical Applications offers a single reference for a diverse biomedical readership to learn about the application of nanotechnology in biomedicine and biomedical engineering, from past developments to current research and future prospects. This book sets out a broad selection of biomedical and therapeutic applications for nanostructures, including bioimaging, nanorobotics, orthopedics, and tissue engineering, offering a useful, multidisciplinary approach. Each chapter discusses challenges faced in each discipline, including limiting factors, biocompatibility, and toxicity, thus enabling the reader to make informed decisions in their research. This book is a comprehensive, broad overview of the role and significance of nanomaterials and their composites that also includes discussions of key aspects in the field of biomedicine. It will be of significant interest to academics and researchers in materials science and engineering, biomedicine and biomedical engineering, chemical engineering, pharmaceutics, bioimaging, and nanorobotics.



فهرست مطالب

Front Cover
Engineered Nanostructures for Therapeutics and Biomedical Applications
Copyright Page
Contents
List of contributors
Preface
1 Engineered nanostructures: an introduction
	1.1 Introduction
	1.2 Role of nanotechnology in medical science
	1.3 Types of nanostructures for medical applications
		1.3.1 Nanoparticles
		1.3.2 Magnetic nanoparticles
		1.3.3 Metallic nanoparticles
		1.3.4 Bimetallic nanoparticles
		1.3.5 Metal oxide nanoparticles
		1.3.6 Carbon nanomaterials
		1.3.7 Graphene quantum dots
		1.3.8 Graphene/graphene oxide
			1.3.8.1 Carbon nanotubes
		1.3.9 Nanowires
		1.3.10 Semiconducting Si nanowires
		1.3.11 Magnetic nanowires
		1.3.12 Nanogels
		1.3.13 Nanofibers
		1.3.14 Nanocapsules
		1.3.15 Metal-organic frameworks
	1.4 Shape controlled engineered (hybrid) nanostructures for biomedical applications
		1.4.1 Drug delivery
		1.4.2 Diagnosis
		1.4.3 Imaging
	1.5 Challenges of therapeutic and biomedical applications
	1.6 Conclusions
	Acknowledgment
	References
2 Fluorescent inorganic nanoparticles for bioimaging and therapeutic applications
	2.1 Introduction
	2.2 Fluorescent inorganic nanoparticles
		2.2.1 Quantum dots
		2.2.2 Upconversion nanoparticles
		2.2.3 Metal nanoparticles
	2.3 Fluorescent inorganic nanoparticles in bioimaging
		2.3.1 Quantum dots for bioimaging
		2.3.2 Upconversion nanoparticles for bioimaging
		2.3.3 Metal nanoparticles for bioimaging
	2.4 Fluorescent inorganic nanoparticles in therapy
		2.4.1 Quantum dots for therapy
		2.4.2 Upconversion nanoparticles for therapy
		2.4.3 Metal nanoparticles for therapy
	2.5 Conclusions
	Acknowledgments
	References
3 Quantum dots and conjugated metal-organic frameworks for targeted drug delivery and bioimaging of cancer
	3.1 Introduction
	3.2 Mechanics of quantum dot: A general architecture
	3.3 Metal-organic framework: a dynamic coordination polymer
	3.4 Designing strategy for QD@MOF nanocomposites
		3.4.1 Encapsulation of quantum dots in metal-organic frameworks
		3.4.2 Postsynthetic loading of quantum dots in metal-organic frameworks
		3.4.3 Other synthesis methods
		3.4.4 Photochemical patterning of QDs@MOFs
	3.5 Different characterization techniques
	3.6 Potential of QD@MOF composite for drug delivery
	3.7 Multifunctional QD@MOF composites for bioimaging applications
	3.8 Conclusion and future perspectives
	Acknowledgment
	References
4 Carbon-based nanogels as a synergistic platform for bioimaging and drug delivery
	4.1 Introduction
	4.2 Properties of C-hNgs
	4.3 Classification of C-hNgs
		4.3.1 pH-responsive C-hNgs
		4.3.2 Glucose-responsive C-hNgs
		4.3.3 Thermo-responsive C-hNgs
		4.3.4 NIR light- and electro-responsive C-hNgs
		4.3.5 Multi-responsive C-hNgs
	4.4 Synthesis of carbon nanomaterial-functionalized carbon-based nanogels
		4.4.1 Fabrication of carbon-dot-based hNgs
		4.4.2 Fabrication of graphene oxide-based hNgs
		4.4.3 Fabrication of fullerene-based hNgs
		4.4.4 Fabrication of carbon nanotube-based hNgs
		4.4.5 Fabrication of nanodiamond-based hNgs
	4.5 Conclusion
	References
5 Graphene oxides and derivatives for biomedical applications: drug delivery/gene delivery, bioimaging, and therapeutics
	5.1 Introduction
	5.2 Graphene oxide and its derivatives
		5.2.1 Synthesis of graphene oxide
			5.2.1.1 Brodie’s oxidation method
			5.2.1.2 Staudenmaier method
			5.2.1.3 Hofmann method
			5.2.1.4 Hummer’s method
			5.2.1.5 Other methods
	5.3 Characterization of graphene oxide
	5.4 Derivatives of graphene oxide
	5.5 Drug delivery/gene delivery
		5.5.1 Polyethylene glycol-based surface functionalization of graphene oxide
		5.5.2 Surface functionalization of graphene oxide with folic acid
		5.5.3 Surface functionalization of graphene oxide polyethyleneimine
		5.5.4 Surface functionalization of graphene oxide with chitosan
	5.6 Bioimaging
		5.6.1 Graphene oxide-based in vitro microplate bioimaging
		5.6.2 Graphene oxide-based in vitro cellular bioimaging
		5.6.3 Graphene oxide-based in vivo bioimaging
	5.7 Graphene-based nanomaterials in bioimaging
		5.7.1 Optical imaging
		5.7.2 Fluorescence imaging
		5.7.3 Two-photon fluorescence imaging
		5.7.4 Raman imaging
		5.7.5 Radionuclide-based imaging
		5.7.6 Magnetic resonance imaging
		5.7.7 Photoacoustic imaging
		5.7.8 Computed tomography
		5.7.9 Multimodal imaging
	5.8 Theranostics
	5.9 Conclusion
	References
6 Self-assembled polymeric nanostructures: a promising platform for bioimaging and therapeutic applications
	6.1 Introduction
	6.2 What is self-assembly?
	6.3 Self-assembled polymeric nanostructures (SAPNs)
		6.3.1 Advantages and mechanism for drug release of SAPNs
		6.3.2 Nanogels (NGs)
			6.3.2.1 Preparation
			6.3.2.2 Biomedical applications of nanogels
				Nanogels for brain/neurodegenerative disease
				Nanogels for cardiovascular diseases
				Nanogels for diabetes management
				Nanogels for cancer therapy and bioimaging
				Nanogels for tissue engineering and gene therapy
				Nanogels for antiinflammatory drugs
				Nanogels for local anesthetics and pain management
				Nanogels for ophthalmic diseases
			6.3.2.3 Recent developments and future perspectives
		6.3.3 Nanospheres (NSs)
			6.3.3.1 Preparation
			6.3.3.2 Biomedical applications of nanospheres
				Nanospheres for tumor treatment
				Nanospheres against mononuclear phagocytic system
				Nanospheres for oral administration of drug
				Nanospheres and blood brain barrier for drug delivery
				Nanospheres for gene delivery
				Nanospheres for cutaneous applications
			6.3.3.3 Recent developments and future prospects
		6.3.4 Nanocapsules (NCs)
			6.3.4.1 Preparation
			6.3.4.2 Biomedical applications of nanocapsules
				Antibody-incorporated nanocapsules for drug delivery
				Nanocapsules for oral delivery
				MRI-guided nanocapsule system for theranostic applications
				Nanocapsule-based in vivo delivery of plasmids
				Nanocapsules as self-healing materials
				Self-assembled DNA-based nanocapsules for drug delivery
				Biomimetic hollow polymeric nanocapsules
			6.3.4.3 Recent developments and future perspective
		6.3.5 Polymeric micelles (PMs)
			6.3.5.1 Preparation
			6.3.5.2 Biomedical applications of polymeric micelles
				Polymeric micelles as polymer-drug conjugates
				Polymeric micelles as nanocontainers
				Polymeric micelles as solubilizing agents for the water-insoluble drugs
				Polymeric micelles with modified-release profile
				Polymeric micelles for tumor treatment via passive drug targeting
				Polymeric micelles for ocular drug delivery
				Polymeric micelles for delivery in brain
			6.3.5.3 Recent developments and future perspective
		6.3.6 Polymersomes (PoMs)
			6.3.6.1 Preparation
			6.3.6.2 Biomedical applications of polymersomes
				Polymersomes for medical imaging
				Polymersomes for cancer therapy
				Polymersomes as antibody-based delivery vectors
				Polymersomes as nanoreactors
				Polymersomes for artificial cells and organelles
				Polymersomes for Gene therapy
				Polymersomes for neurodegenerative diseases
			6.3.6.3 Recent developments and future perspective
		6.3.7 Liquid crystals (LCs)
			6.3.7.1 Preparation
			6.3.7.2 Biomedical applications of liquid crystals
				Liquid crystals for rapid diagnosis
				Liquid crystals for biomimicry
				Liquid crystals for high-density-lipoproteins testing in human serum
				Liquid crystals for ophthalmic lenses
				Liquid crystals for sperm testing
				Liquid crystals for dental fillings
				Liquid crystals for solubility enhancement
				Liquid crystals for drug delivery
			6.3.7.3 Recent developments and future perspective
		6.3.8 Dendrimers (DMs)
			6.3.8.1 Preparation
			6.3.8.2 Biomedical applications of dendrimers
				Dendrimers porters for anticancer drugs
				Dendrimers for transdermal drug delivery
				Dendrimers for gene delivery
				Dendrimers as imaging contrast agent
				Dendrimers used for enhancing solubility
				Dendrimer-based photodynamic therapy (PDT)
				Dendrimers as biomimics
				Dendrimers for oral drug delivery
			6.3.8.3 Recent development and future perspectives
	References
7 Nanofibrous scaffolds for tissue engineering processes
	7.1 Introduction
	7.2 Self-assembly
		7.2.1 β-Sheet-forming peptides
		7.2.2 α-Helical-forming peptides
		7.2.3 Peptide amphiphiles
	7.3 Electrospinning
	7.4 Phase separation
	7.5 Perspective and future directions
	Acknowledgment
	References
8 Design and testing of nanobiomaterials for orthopedic implants
	Abbreviations
	8.1 Introduction
	8.2 Role of nanobiomaterials for orthopedic implants
	8.3 Nanotechnology for tissue-engineered bones and nanoscaffolds for improved bone grafts and implants
		8.3.1 Nano scaffolds for bone grafts and implants
			8.3.1.1 Polymers
			8.3.1.2 Ceramics
			8.3.1.3 Carbon nanotubes and carbon nanofibers
			8.3.1.4 Composite materials
			8.3.1.5 Metal based nanoparticles in scaffolds and implants
		8.3.2 Drug loaded scaffolds
	8.4 Spinal implants
		8.4.1 Nanotechnology for spinal fusion
		8.4.2 Nanotechnology based implants for osteoporotic bones
	8.5 Nanotechnology for fracture repair (internal fixation devices)
	8.6 Nanotechnology for arthoplasty
	8.7 Nanomaterials modified orthopedic implants for prevention of orthopedic infections
	8.8 Nanotechnology driven implants for anticancer application in orthopedics
	8.9 Future scopes and challenges
	References
9 Drug-releasing nano-bioimplants: from basics to current progress
	9.1 Introduction
	9.2 Classification of nano-bioimplants
		9.2.1 Polymeric nano-bioimplants
			9.2.1.1 Biodegradable polymeric implant
			9.2.1.2 Non-biodegradable polymeric implant
		9.2.2 Metallic nano-implants
		9.2.3 Bio-ceramic nano-implants
	9.3 Processing and characterization of bio-implants
	9.4 Applications of nano-bioimplants
		9.4.1 Orthopedic implants
		9.4.2 Dental implants
		9.4.3 Cardiovascular implants
		9.4.4 Tissue regeneration
		9.4.5 Cancer therapy
	9.5 Impact of nano-bioimplants
	9.6 Recent trends and challenges in nano-bioimplants
		9.6.1 Additive manufacturing
	9.7 Future aspects of nano-bioimplants
	9.8 Conclusion
	References
10 Mobile nanorobotics for biomedical applications
	10.1 Introduction
	10.2 Nanorobots in diagnosis/sensing and detoxification
	10.3 Nanorobots in drug delivery
	10.4 Nanorobots in surgery
	10.5 Biomolecular nanorobots
	10.6 Conclusion, gaps, and future prospects
	Acknowledgment
	References
11 Opportunities, challenges, and future prospects of engineered nanostructures for therapeutics and biomedical applications
	11.1 Nanobiotechnology and nanomedicine—a success story
	11.2 Pitfalls and challenges
		11.2.1 Biological challenges
			11.2.1.1 Biological barriers and specific targeting
			11.2.1.2 Incongruence between human disease and animal models
		11.2.2 Technological challenges
			11.2.2.1 Regulatory and pharmacological challenges
			11.2.2.2 Challenges in scaling up and manufacturing
		11.2.3 Other challenges
	11.3 Future of engineered nanostructures in medicine
	References
Index
Back Cover




نظرات کاربران