دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: 3 نویسندگان: Moncef Krarti سری: Mechanical and Aerospace Engineering Series ISBN (شابک) : 0367820463, 9780367820466 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 657 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Energy Audit of Building Systems: An Engineering Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ممیزی انرژی سیستم های ساختمان: یک رویکرد مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهروزرسانی شده تا شامل پیشرفتهای اخیر شود، این ویرایش سوم استراتژیها و روشهای تحلیلی را برای صرفهجویی در انرژی و کاهش هزینههای عملیاتی در ساختمانهای مسکونی و تجاری ارائه میکند.
این کتاب به بررسی میپردازد. آخرین رویکردها برای اندازه گیری و بهبود سطوح مصرف انرژی، با مثال های محاسباتی و مطالعات موردی. این شامل آزمایش میدانی، شبیه سازی انرژی، و تجزیه و تحلیل مقاوم سازی ساختمان های موجود است. این زیرسیستمها - مانند روشنایی، گرمایش و سرمایش - و تکنیکهای مورد نیاز برای ارزیابی دقیق آنها را بررسی میکند. منبع ارزشمندی برای کار آنها است.
مونسف کرارتی تجربه زیادی در طراحی، آزمایش و ارزیابی فنآوریهای نوآورانه انرژی و انرژیهای تجدیدپذیر به کار رفته در ساختمانها دارد. او فارغ التحصیل کارشناسی ارشد و دکتری در رشته مهندسی عمران از دانشگاه کلرادو است. پروفسور کرارتی پروژه های متعددی را در زمینه طراحی ساختمان های کم مصرف با سیستم های یکپارچه انرژی های تجدیدپذیر هدایت کرد. او بیش از 3000 مجله فنی و فصل های راهنما در زمینه های مختلف مرتبط با بهره وری انرژی، تولید توزیع و مدیریت سمت تقاضا برای محیط ساخته شده منتشر کرده است. علاوه بر این، او چندین کتاب در زمینه ساخت سیستم های انرژی کارآمد منتشر کرده است. پروفسور کرارتی عضو انجمن مهندسین مکانیک آمریکا (ASME)، بزرگترین انجمن حرفه ای بین المللی است. او سردبیر ASME Journal of Sustainable Buildings & Cities Equipment and Systems است. پروفسور کرارتی چندین دوره مختلف مرتبط با سیستم های انرژی ساختمان را برای بیش از 20 سال در ایالات متحده و خارج از کشور تدریس کرده است. پروفسور کرارتی به عنوان استاد دانشگاه کلرادو، فعالیت های تحقیقاتی یک مرکز مدیریت انرژی در مدرسه را با تاکید بر آزمایش و ارزیابی عملکرد سیستم های مکانیکی و الکتریکی برای ساختمان های مسکونی و تجاری مدیریت می کند. او همچنین به توسعه مراکز مشابه بهره وری انرژی در کشورهای دیگر از جمله برزیل، مکزیک و تونس کمک کرده است. علاوه بر این، پروفسور کرارتی تجربه گسترده ای در ترویج فن آوری ها و سیاست های انرژی ساختمان در خارج از کشور، از جمله ایجاد مراکز تحقیقات انرژی، توسعه کدهای انرژی ساختمان، و ارائه برنامه های آموزشی انرژی در چندین کشور دارد.</ p>
Updated to include recent advances, this third edition presents strategies and analysis methods for conserving energy and reducing operating costs in residential and commercial buildings.
The book explores the latest approaches to measuring and improving energy consumption levels, with calculation examples and Case Studies. It covers field testing, energy simulation, and retrofit analysis of existing buildings. It examines subsystems―such as lighting, heating, and cooling―and techniques needed for accurately evaluating them.
Auditors, managers, and students of energy systems will find this book to be an invaluable resource for their work.
Moncef Krarti has vast experience in designing, testing, and assessing innovative energy efficiency and renewable energy technologies applied to buildings. He graduated from the University of Colorado with both MS and PhD in Civil Engineering. Prof. Krarti directed several projects in designing energy-efficient buildings with integrated renewable energy systems. He has published over 3000 technical journals and handbook chapters in various fields related to energy efficiency, distribution generation, and demand-side management for the built environment. Moreover, he has published several books on building energy-efficient systems. Prof. Krarti is Fellow member to the American Society for Mechanical Engineers (ASME), the largest international professional society. He is the founding editor of the ASME Journal of Sustainable Buildings & Cities Equipment and Systems. Prof. Krarti has taught several different courses related to building energy systems for over 20 years in the United States and abroad. As a professor at the University of Colorado, Prof. Krarti has been managing the research activities of an energy management center at the school with an emphasis on testing and evaluating the performance of mechanical and electrical systems for residential and commercial buildings. He has also helped the development of similar energy efficiency centers in other countries, including Brazil, Mexico, and Tunisia. In addition, Prof. Krarti has extensive experience in promoting building energy technologies and policies overseas, including the establishment of energy research centers, the development of building energy codes, and the delivery of energy training programs in several countries.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Author Biography Chapter 1: Introduction to Energy Audit 1.1. Introduction 1.2. Types of Energy Audits 1.2.1. Walk-Through Audit 1.2.2. Utility Cost Analysis 1.2.3. Standard Energy Audit 1.2.4. Detailed Energy Audit 1.3. General Procedure for a Detailed Energy Audit 1.3.1. Step: Building and Utility Data Analysis 1.3.2. Step: Walk-Through Survey 1.3.3. Step: Baseline for Building Energy Use 1.3.4. Step: Evaluation of Energy Savings Measures 1.4. Common Energy Conservation Measures 1.4.1. Building Envelope 1.4.2. Electrical Systems 1.4.3. HVAC Systems 1.4.4. Compressed Air Systems 1.4.5. Energy Management Controls 1.4.6. Indoor Water Management 1.4.7. New Technologies 1.5. Case Study 1.5.1. Step 1: Building and Utility Data Analysis 1.5.2. Step 2: On-Site Survey 1.5.3. Step 3: Energy Use Baseline Model 1.5.4. Step 4: Evaluation of Energy Conservation Opportunities (ECOs) 1.5.5. Step 5: Recommendations 1.6. Verification Methods of Energy Savings 1.7. Summary Chapter 2: Energy Sources and Utility Rate Structures 2.1. Introduction 2.2. Energy Resources 2.1.1. Electricity 2.2.1.1. Overall Consumption and Price 2.2.1.2. Future of US Electricity 2.2.1.3. Utility Deregulation Impact 2.2.2. Natural Gas 2.2.3. Petroleum Products 2.2.4. Coal 2.3. Electricity Rates 2.3.1. Common Features of Utility Rates 2.3.1.1. Billing Demand 2.3.1.2. Power Factor Clause 2.3.1.3. Ratchet Clause 2.3.1.4. Fuel Cost Adjustment 2.3.1.5. Service Level 2.3.2. Block Pricing Rates 2.3.3. Seasonal Pricing Rates 2.3.4. Innovative Rates 2.3.4.1. Time-of-Use (TOU) Rates 2.3.4.2. Real-Time Pricing Rates 2.3.4.3. The End-Use Rates 2.3.4.4. Specialty Rates 2.3.4.5. Financial Incentive Rates 2.3.4.6. Nonfirm Rates 2.3.4.7. Energy Purchase Rates 2.3.5. Real-Time Pricing Rates 2.3.5.1. Category: Base Bill and Incremental Energy Charge Rates 2.3.5.2. Category: Total Energy Charge Rates 2.3.5.3. Category: Day-Type Rates 2.3.5.4. Category: Index-Type Rates 2.3.6. Case Study of RTP Rates 2.4. Natural Gas Rates 2.5. Utility Rates for Other Energy Sources 2.6. Summary Chapter 3: Economic Analysis 3.1. Introduction 3.2. Basic Concepts 3.2.1. Interest Rate 3.3. Inflation Rate 3.3.1. Tax Rate 3.3.2. Cash Flows 3.4. Compounding Factors 3.4.1. Single Payment 3.4.2. Uniform-Series Payment 3.5. Economic Evaluation Methods Among Alternatives 3.5.1. Net Present Worth 3.5.2. Rate of Return 3.5.3. BenefitCost Ratio 3.5.4. Payback Period 3.5.5. Cost of Energy 3.5.6. Summary of Economic Analysis Methods 3.6. Life-Cycle Cost Analysis Method 3.7. General Procedure for an Economic Evaluation 3.8. Financing Options 3.8.1. Direct Purchasing 3.8.2. Leasing 3.8.3. Performance Contracting 3.9. Summary Chapter 4: Energy Analysis Tools 4.1. Introduction 4.2. Ratio-Based Methods 4.2.1. Introduction 4.2.2. Types of Ratios 4.2.3. Examples of Energy Ratios 4.3. Inverse Modeling Methods 4.3.1. Steady-State Inverse Models 4.3.1.1. ANAGRAM Method 4.3.1.2. PRISM Method 4.3.2. Dynamic Models 4.4. Forward Modeling Methods 4.4.1. Steady-State Methods 4.4.2. Degree-Day Methods 4.4.3. Bin Methods 4.4.4. Dynamic Methods 4.5. Summary Chapter 5: Electrical Systems 5.1. Introduction 5.2. Review Of Basics 5.2.1. Alternating Current Systems 5.2.2. Power Factor Improvement 5.3. Electrical Motors 5.3.1. Introduction 5.3.2. Overview of Electrical Motors 5.3.3. Energy-Efficient Motors 5.3.3.1. General Description 5.3.3.2. Adjustable Speed Drives (ASDs) 5.3.3.3. Energy Savings Calculations 5.4. Lighting Systems 5.4.1. Introduction 5.4.2. Energy-Efficient Lighting Systems 5.4.2.1. High-Efficiency Fluorescent Lamps 5.4.2.2. Compact Fluorescent Lamps 5.4.2.3. Compact Halogen Lamps 5.4.2.4. Electronic Ballasts 5.4.3. Lighting Controls 5.4.3.1. Occupancy Sensors 5.4.3.2. Light Dimming Systems 5.4.3.3. Energy Savings from Daylighting Controls 5.5. Electrical Appliances 5.5.1. Office Equipment 5.5.2. Residential Appliances 5.6. Electrical Distribution Systems 5.6.1. Introduction 5.6.2. Transformers 5.6.3. Electrical Wires 5.7. Power Quality 5.7.1. Introduction 5.7.2. Total Harmonic Distortion 5.8. Summary Chapter 6: Building Envelope 6.1. Introduction 6.2. Basic Heat Transfer Concepts 6.2.1. Heat Transfer from Walls and Roofs 6.2.2. Infiltration Heat Loss/Gain 6.2.3. Variable-Base Degree-Days Method 6.3. Simplified Calculation Tools for Building Envelope Audit 6.3.1. Estimation of the Energy Use Savings 6.3.2. Estimation of the BLC for the Building 6.3.3. Estimation of the Degree-Days 6.3.4. Foundation Heat Transfer Calculations 6.3.5. Simplified Calculation Method for Building Foundation Heat Loss/Gain 6.3.5.1. Calculation Example No. 1: Basement for a Residential Building 6.3.5.2. Calculation Example No. 2: Freezer Slab 6.4. Selected Retrofits For Building Envelope 6.4.1. Insulation of Poorly Insulated Building Envelope Components 6.4.2. Window Improvements 6.4.3. Reduction of Air Infiltration 6.4.4. Implementation of Breathing Walls 6.5. Summary Chapter 7: Secondary HVAC Systems 7.1. Introduction 7.2. Types of Secondary HVAC Systems 7.3. Ventilation Systems 7.3.1. Ventilation Air Intake 7.3.2. Air Filters 7.3.3. Air-Side Economizers 7.3.3.1. Temperature Economizer Cycle 7.3.3.2. Enthalpy Economizer Cycle 7.4. Ventilation of Parking Garages 7.4.1. Existing Codes and Standards 7.4.2. General Methodology for Estimating the Ventilation Requirements for Parking Garages 7.4.2.1. Step. Collect Data About Parking Garage 7.4.2.2. Step. Estimate CO Generation Rate 7.4.2.3. Step. Determine the Required Ventilation Rate 7.5. Indoor Temperature Controls 7.6. Upgrade of Fan Systems 7.6.1. Introduction 7.6.2. Basic Principles of Fan Operation 7.6.3. Duct Leakage 7.6.4. Damper Leakage 7.6.5. Size Adjustment 7.7. Heat Recovery Systems 7.7.1. Introduction 7.7.2. Types of Heat Recovery Systems 7.7.3. Performance of Heat Recovery Systems 7.7.4. Simplified Analysis Methods 7.8. Common HVAC Retrofit Measures 7.8.1. Reduction of Outdoor Air Volume 7.8.2. Reset Hot or Cold Deck Temperatures 7.8.3. CV to VAV System Retrofit 7.9. Summary Chapter 8: Primary Heating and Cooling Systems 8.1. Introduction 8.2. Heating Systems 8.2.1. Overview of Combustion Principles 8.2.2. Boiler Configurations and Components 8.2.2.1. Boiler Types 8.2.2.2. Boiler Firing Systems 8.2.3. Boiler Thermal Efficiency 8.2.4. Boiler Efficiency Improvements 8.2.4.1. Tune-Up of Boilers 8.2.4.2. High-Efficiency Boilers 8.2.4.3. Modular Boilers 8.3. Cooling Systems 8.3.1. Overview of Cooling Principles 8.3.2. Types of Cooling Systems 8.3.2.1. Unitary AC Systems 8.3.2.2. Packaged AC Systems 8.3.2.3. Heat Pumps 8.3.2.4. Central Chillers 8.3.3. Retrofit Measures for Cooling Systems 8.3.3.1. Chiller Replacement 8.3.3.2. Chiller Control Improvement 8.3.3.3. Multiple Chillers 8.3.3.4. Alternate Cooling Systems 8.3.4. Impact of Oversizing Air-Conditioning Systems 8.3.4.1. HVAC Systems Design Approach 8.3.4.2. Impact of AC Sizing on Energy Use 8.4. Water Distribution Systems 8.4.1. Pumps 8.4.2. Pump and System Curves 8.4.3. Analysis of Water Distribution Systems 8.5. Summary Chapter 9: Distributed Energy Systems 9.1. Introduction 9.2. Combined Heat and Power Systems 9.2.1. Types of CHP Systems 9.2.1.1. Conventional CHP Systems 9.2.1.2. Packaged CHP Systems 9.2.1.3. Fuel Cells 9.2.2. Evaluation of CHP Systems 9.2.2.1. Efficiency of CHP Systems 9.2.2.2. Simplified Analysis of CHP Systems 9.2.3. Financial Options for CHP Systems 9.3. Renewable Energy Systems 9.3.1. Passive Solar Systems 9.3.2. Solar Thermal Collectors 9.3.2.1. Solar Domestic Hot Water Systems 9.3.2.2. Solar Combisystems 9.3.2.3. Photovoltaic/Thermal Collectors 9.3.3. Photovoltaic Systems 9.3.3.1. PV System Configurations 9.3.3.2. Analysis of PV System Performance 9.3.3.3. PV System Components 9.4. Thermal Energy Storage Systems 9.4.1. Types of TES Systems 9.4.2. Operation of TES Systems 9.4.3. Control Strategies of TES Systems 9.4.3.1. Full Storage 9.4.3.2. Partial Storage 9.4.4. Options for TES Operating Cost Reduction 9.4.4.1. Feasibility Analysis of TES Systems 9.4.4.2. Operation Improvements of TES Systems 9.5. District Energy Systems 9.5.1. Overview of DES 9.5.2. Benefits of DES 9.5.3. Technologies for Heating 9.5.4. Technologies for Cooling 9.5.5. DES Distribution Systems 9.5.6. DES End-User Systems 9.5.7. Simplified Analysis of DES 9.6. Summary Chapter 10: Energy Management Control Systems 10.1. Introduction 10.2. Basic Control Principles 10.2.1. Control Modes 10.2.2. Intelligent Control Systems 10.2.3. Types of Control Systems 10.3. Energy Management Systems 10.3.1. Basic Components of EMCS 10.3.2. Typical Functions of EMCS 10.3.3. Design Considerations of EMCS 10.3.4. Communication Protocols 10.4. Control Applications 10.4.1. Duty Cycling Controls 10.4.2. Outdoor Air Intake Controls 10.4.2.1. VAV Control Techniques for Economizer Systems 10.4.2.2. VAV Control Techniques for Systems with a Dedicated Outside Air Duct 10.4.2.3. Other VAV Control Techniques 10.4.2.4. Comparative Analysis 10.4.3. Optimum Start Controls 10.4.4. Cooling/Heating Central Plant Optimization 10.4.4.1. Single Chiller Control Improvement 10.4.4.2. Controls for Multiple Chillers 10.4.4.3. Controls for Multiple Boilers 10.5. Summary Chapter 11: Smart Building Energy Systems 11.1. Introduction 11.2. Smart Grid 11.3. Smart Building Technologies 11.3.1. Building Envelope Systems 11.3.1.1. Dynamic Window Systems 11.3.1.2. Dynamic Opaque Systems 11.3.2. Electrical Systems 11.3.2.1. Lighting Systems 11.3.2.2. Office Equipment 11.3.2.3. Appliances 11.3.3. Mechanical Systems 11.3.3.1. HVAC Systems 11.3.3.2. Water Heating Systems 11.3.4. Smart Controls 11.4. Analysis Approaches 11.4.1. Analysis of Building Load Profiles 11.4.2. Energy Efficiency Optimization 11.4.3. Demand Reduction Optimization 11.5. Evaluation of Smart Energy Systems 11.5.1. Switchable Insulation Systems 11.5.1.1. Switchable Insulations for Roofs 11.5.1.2. Switchable Insulations for Walls 11.5.1.3. Switchable Insulations for Windows 11.5.2. Lighting Systems 11.5.2.1. LED-Integrated Controls 11.5.2.2. Advanced Daylighting Controls 11.5.3. Passive and Active TES Systems 11.5.4. Smart Thermostats 11.5.4.1. Potential Energy Savings 11.5.4.2. Benefits for Large-Scale Deployment 11.5.4.3. Cost-Effectiveness Analysis 11.6. Summary Chapter 12: Water Management 12.1. Introduction 12.2. Indoor Water Management 12.2.1. Water-Efficient Plumbing Fixtures 12.2.1.1. Water-Saving Showerheads 12.2.1.2. Water-Saving Toilets 12.2.1.3. Water-Saving Faucets 12.2.1.4. Repair Water Leaks 12.2.1.5. Water/Energy-Efficient Appliances 12.2.2. Domestic Hot Water Usage 12.2.3. Water Heaters 12.2.4. Hot Water Distribution Systems 12.3. Outdoor Water Management 12.3.1. Irrigation and Landscaping 12.3.2. Wastewater Reuse 12.4. Swimming Pools 12.4.1. Evaporative Losses 12.4.2. Impact of Pool Covers 12.5. Summary Chapter 13: Large-Scale Retrofit Analysis 13.1. Introduction 13.2. Building Stock Modeling Approaches 13.2.1. Top-Down Modeling Approaches 13.2.2. Bottom-Up Statistical Modeling Methods 13.2.3. Bottom-Up Deterministic Engineering Modeling Methods 13.2.4. Bottom-Up Stochastic Engineering Modeling Methods 13.3. General Methodology for Large-Scale Retrofit Analysis 13.3.1. Main Building Characteristics 13.3.2. Building Stock Model 13.3.3. Calibration Analysis 13.3.4. Energy Efficiency Analysis 13.4. Case Studies 13.4.1. Retrofit of Residential Building Stock 13.4.1.1. Household Perspective 13.4.1.2. Government Perspective 13.4.2. Retrofit of Commercial Building Stock 13.4.2.1. Representative Office Building Models 13.4.2.2. Office Building Stock Model 13.4.2.3. Energy Efficiency Measures 13.4.2.4. Net-Zero Energy Building Analysis 13.4.2.5. Overview of Analysis Results 13.5. Summary Chapter 14: Energy Productivity Analysis 14.1. Introduction 14.2. Energy Productivity Concepts 14.2.1. Overview of Macroeconomic Principles 14.2.2. Multiple Benefits of Energy Efficiency 14.3. Energy Productivity Analysis Approach 14.3.1. Macroeconomic Analysis for Building Sector 14.3.2. Analysis for Individual Buildings 14.3.3. Impact of Energy Efficiency Measures 14.3.4. Estimation of Value Added from Energy Efficiency 14.4. Applications of Energy Productivity Analysis 14.4.1. Energy Retrofit of Individual Buildings 14.4.2. Energy Retrofit of Building Stocks 14.5. Summary Chapter 15: Methods for Estimating Energy Savings 15.1. Introduction 15.2. General Procedure 15.3. Energy Savings Estimation Models 15.3.1. Simplified Engineering Methods 15.3.2. Regression Analysis Models 15.3.2.1. Single-Variable Regression Analysis Models 15.3.2.2. Multivariable Regression Analysis Models 15.3.3. Dynamic Models 15.3.4. Computer Simulation Models 15.4. Applications 15.5. Uncertainty Analysis 15.6. Summary Chapter 16: Audit Reports 16.1. Reporting Guidelines 16.1.1. Reporting a Walk-Through Audit 16.1.2. Reporting a Standard Audit 16.2. Case Study: Walk-Through Audit of a Residence 16.2.1. Building Description 16.2.1.1. Building Envelope 16.2.1.2. Building Infiltration 16.2.1.3. HVAC System 16.2.1.4. Water Management 16.2.1.5. Appliances 16.2.1.6. Thermal Comfort 16.2.2. Energy Efficiency Measures 16.2.2.1. Building Envelope 16.2.2.2. Water Management 16.2.2.3. Appliances 16.2.3. Economic Analysis 16.2.4. Recommendations 16.3. Case Study: Standard Audit of a Residence 16.3.1. Architectural Characteristics 16.3.2. Utility Analysis 16.3.3. Air Leakage Testing 16.3.4. Energy Modeling 16.3.5. Model Calibration 16.3.6. Energy Conservation Measures 16.3.7. Conclusions and Recommendations 16.4. Case Study: Audit of a Museum 16.4.1. Building Description 16.4.1.1. HVAC Systems 16.4.1.2. Electrical Systems 16.4.2. Walk-Through Audit 16.4.2.1. Lighting Systems 16.4.2.2. Mechanical Systems 16.4.2.3. Building Shell 16.4.2.4. Other Issues 16.4.3. Utility Data Analysis 16.4.3.1. Base-Load Determination 16.4.3.2. Building Load Characteristics 16.4.4. Occupant Survey 16.4.5. Field Testing and Measurements 16.4.5.1. Lighting Quality 16.4.5.2. Space Temperature and Humidity Profiles 16.4.5.3. Thermal Imaging 16.4.6. Energy Modeling 16.4.6.1. Building Envelope, Geometry, and Thermal Zones 16.4.6.2. HVAC Components 16.4.6.3. Calibration of the Energy Model 16.4.7. Analysis of Energy Conservation Measures 16.4.7.1. Overview 16.4.8. Energy Savings Estimation 16.4.8.1. EEM: DelampingPercent of Lamps 16.4.8.2. EEM: Increased Roof Insulation 16.4.8.3. EEM: Window Replacement 16.4.8.4. EEM: Occupancy Sensors 16.4.8.5. EEM: Premium Efficiency Pumps 16.4.8.6. EEM: Improved Fume Hood ControlsDemand-Controlled Ventilation 16.4.8.7. EEM: Improved Water Fixture Efficiency 16.4.8.8. EEM: Optimized Package of EEMs 16.4.9. Economic Analysis 16.5. Summary and Recommendations Appendix A Appendix B References Index