دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی فیزیکی ویرایش: نویسندگان: James Keeler سری: ناشر: سال نشر: 2005 تعداد صفحات: 78 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 772 کیلوبایت
در صورت تبدیل فایل کتاب Energetics and Equilibria به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انرژی و تعادل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این سخنرانیها به موضوع بسیار مهمی در شیمی (و به طور کلیتر، در هر علم مولکولی) مربوط میشوند: چه چیزی باعث میشود یک واکنش «برود» و چه چیزی موقعیت تعادل را تعیین میکند. به عبارت دیگر، ما به دنبال این خواهیم بود که نیروی محرکه واکنشهای شیمیایی چیست تا توضیح دهیم چرا برخی از واکنشها به طور کامل به سمت محصولات میروند، در حالی که برخی به وضعیت تعادلی میرسند که در آن مقادیر قابلتوجهی از واکنشدهندهها هنوز وجود دارد. خواهیم دید که یک قانون فیزیکی بسیار مهم وجود دارد، قانون دوم ترمودینامیک، که تعیین میکند آیا یک واکنش (یا فرآیند فیزیکی) «برود» و وضعیت تعادل چیست. قانون به خودی خود ساده است، اما کار از این بیانیه تا روابط عملی و ایده هایی که می توانیم به کار ببریم، کار نسبتاً پیچیده ای است. بخش قابل توجهی از این سخنرانی ها به نشان دادن چگونگی توسعه قانون دوم به این طریق اختصاص خواهد یافت. سپس به بررسی برخی از برنامه ها می پردازیم.
These lectures are concerned with a very important topic in chemistry (and, more generally, in any molecular science): what makes a reaction ‘go’ and what determines to position of equilibrium. Put another way, we will be looking into what is the driving force for chemical reactions in order to explain why some reactions go entirely to products, whereas some come to a position of equilibrium in which there are significant amounts of reactants still present. We shall see there there is one very important physical law, the Second Law of Thermodynamics, which determines whether a reaction (or physical process) will ‘go’ and what the position of equilibrium is. The Law itself is simple to state, but working from this statement to practical relationships and ideas which we can apply is a fairly involved task. A substantial part of these lectures will be devoted to showing how the Second Law can be developed in this way; we will then go on to look at some applications.
1 Introduction 1 1.1 Books 2 2 The Second Law 3 2.1 Spontaneous processes 3 2.2 Energy minimization 4 2.3 The Second Law 5 2.4 Molecular basis of entropy 5 2.4.1 Energy levels 6 2.4.2 Ways of arranging things 6 2.4.3 The most probable distribution 7 2.4.4 The Boltzmann distribution 7 2.4.5 Entropy and distributions 8 2.4.6 Entropy as a microscopic property: summary 9 2.5 Classical view of entropy 10 2.6 The Second Law in action: how to make ice 10 2.6.1 Separating the Universe into the system and the surroundings 11 2.6.2 Water freezing 12 3 The First Law of Thermodynamics 15 3.1 What is heat? 15 3.2 What is work? 15 3.3 What is internal energy? 15 3.4 State functions and path functions 16 3.4.1 State functions 16 3.4.2 Path functions 17 3.5 Sign conventions 17 4 Gas expansions 19 4.1 Gas laws 19 4.2 How to think about a gas expansion 19 4.3 Expansion against constant external pressure 20 4.4 Expansion doing maximum work 21 4.4.1 Reversible and irreversible processes 21 4.4.2 Reversible isothermal expansion of an ideal gas 22 4.5 Heat changes in gas expansions 22 4.6 Entropy and the reversible heat 23 4.6.1 Entropy change in an isothermal expansion of an ideal gas 23 5 Internal energy, enthalpy and heat capacity 25 5.1 Differential forms 25 5.2 Constant volume processes 25 5.2.1 Heat capacities 26 5.3 Constant pressure processes – enthalpy 27 5.3.1 Heat capacity at constant pressure 28 5.3.2 Variation of enthalpy with temperature 28 5.4 Measurement and tabulation of heat capacities 29 6 Measuring entropy 31 6.1 Absolute entropies 31 6.1.1 Practical evaluation of entropies 31 6.1.2 Converting entropies from one temperature to another 32 7 Gibbs energy 34 7.1 Gibbs energy and the Universal entropy 34 7.2 How the Gibbs energy varies with pressure and temperature 35 7.2.1 The Master Equations 35 7.2.2 Variation of G with p (and V), at constant T 36 7.2.3 Variation of G with T, at constant p 38 8 Chemical changes 39 8.1 The ∆ r symbol 39 8.2 Standard states and standard changes 39 8.3 Enthalpies of formation 40 8.4 Standard entropy and Gibbs energy changes for reactions 41 8.5 Variation of ∆ rH◦ with temperature 41 8.6 Variation of ∆ rS ◦ with temperature 42 9 Mixtures 43 9.1 The mixing of ideal gases 43 9.1.1 Partial pressures 43 9.1.2 Gibbs energy of the components in a mixture 44 9.2 Reacting mixtures 44 9.3 Chemical potential 45 9.3.1 The chemical potential of gases, solutions and solids 46 10 Equilibrium 48 10.1 Equilibrium constants 48 10.2 Condition for chemical equilibrium 49 10.3 Relation between ∆ rG◦ and the equilibrium constant 50 10.3.1 Equilibria involving solids 51 10.4 Interpretation of ∆rG◦ = −RT ln K 52 10.5 Influencing equilibrium 53 10.5.1 Le Chatelier’s principle 53 10.5.2 Changing concentration 54 10.5.3 Effect of temperature 54 10.5.4 Variation of equilibrium with pressure 57 11 Applications in biology 59 12 Electrochemistry 61 12.1 Cell conventions 62 12.1.1 Half-cell reactions and couples 62 12.1.2 The cell conventions 62 12.1.3 Shorthand for cells 62 12.1.4 Examples of using the cell conventions 63 12.2 Thermodynamic parameters from cell potentials 64 12.3 The Nernst equation 64 12.3.1 Chemical potentials and activities 64 12.3.2 Derivation of the Nernst equation 65 12.3.3 Nernst equation for half cells 66 12.4 Standard half-cell potentials 67 12.4.1 Tabulation of standard half-cell potentials 67 12.5 The spontaneous cell reaction 67 12.6 Types of half cells 68 12.6.1 Metal/metal ion 68 12.6.2 Gas/ion 69 12.6.3 Redox 69 12.6.4 Metal/insoluble salt/anion 69 12.6.5 Liquid junctions 70 12.7 Redox stability 70 12.8 Applications 72 12.8.1 Solubility product of AgI 72 12.8.2 Thermodynamic parameters of ions 72 12.8.3 Concentration cells 73 13 Appendix: available on www-teach.ch.cam.ac.uk 74 13.1 Partial derivatives 74 13.1.1 The Master Equations 74 13.1.2 Maxwell’s relations 76 13.2 More about ∆ r quantities 77 13.2.1 Variation of ∆ rH with temperature 77 13.2.2 Variation of ∆ rS with temperature 78 13.3 Relationship between ∆rG for the cell reaction and the cell EMF 78 13.3.1 Electrical work from a cell 78 13.3.2 Relation of the cell potential to ∆rGcell 79