دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second edition
نویسندگان: Lerman. S (ed.)
سری: Springer reference
ISBN (شابک) : 9783030157883, 3030157881
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 937
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
کلمات کلیدی مربوط به کتاب دایره المعارف آموزش ریاضی: Internationaler Vergleich، ریاضیات--مطالعه و تدریس،Mathematikunterricht،دانشنامه ها،ریاضیات -- مطالعه و تدریس -- دایره المعارف ها،ریاضیات -- مطالعه و تدریس
در صورت تبدیل فایل کتاب Encyclopedia of mathematics education به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دایره المعارف آموزش ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword......Page 5
Preface to Second Edition......Page 7
Preface to First Edition......Page 9
List of Topics......Page 11
About the Section Editors......Page 17
Contributors......Page 21
Ability Grouping Practices in Different Countries......Page 33
Ability Grouping, Achievement, and Equity......Page 34
References......Page 36
Historical and Epistemological Landmarks......Page 37
Structures......Page 38
Structuralist Thinking and Praxeologies......Page 39
References......Page 40
The Emergence of the Theoretical Framework......Page 41
Model and Methodology......Page 42
Research Directions......Page 43
References......Page 44
Elaboration......Page 45
Perspectives......Page 46
Cross-References......Page 47
The Mental Structures and Mechanisms of APOS Theory......Page 48
Studies That Use APOS Theory......Page 49
Results......Page 50
References......Page 51
Minimum Unit......Page 52
Structure of Activity......Page 53
Subjectification and Personality......Page 54
References......Page 55
Definitions: Contested Meanings in an Emerging Field......Page 56
Characteristics of an Emerging Field......Page 57
Adults as Workers......Page 59
Teaching, Learning, and Professional Development......Page 60
References......Page 61
From Anxiety and Problem-Solving to Affective Systems......Page 64
The Role of Emotional States in Self-Regulation......Page 65
Creating an Emotionally Supportive Learning Environment......Page 66
References......Page 67
Definition......Page 68
Evolving Perspectives on School Algebra and Its Research Over the Years......Page 69
What Does Research Tell Us About the Learning of School Algebra?......Page 70
What Research Says About the Teaching of Algebra......Page 73
For Further Study and Reflection......Page 74
References......Page 75
Definition......Page 76
Students´ Understanding of Algorithmic Structures and Languages......Page 77
Algorithmics and Programming Competencies......Page 78
References......Page 79
Definition......Page 80
References......Page 81
Foundations: Real Numbers......Page 82
The Calculus-Analysis Transition at University......Page 83
References......Page 84
Introduction......Page 85
Relations to Objects......Page 86
The Theory of Praxeologies......Page 87
Conditions and Constraints......Page 88
The (Possibly) Didactic......Page 90
Study Paradigms......Page 91
References......Page 92
Characteristics of Argumentation......Page 93
Mathematics Classrooms and Argumentation......Page 95
Approaches to Argumentation in Mathematics Education......Page 96
References......Page 97
Certification of New Teachers......Page 98
Research on Teacher Knowledge......Page 99
References......Page 100
Characteristics......Page 101
References......Page 103
Characteristics......Page 104
References......Page 105
Bilingualism......Page 107
Research Findings......Page 108
History......Page 109
Cross-References......Page 110
Characteristics......Page 111
Cross-References......Page 112
Historical Development......Page 113
Influence on Mathematics Education......Page 114
Contemporary Classroom Applications......Page 116
References......Page 117
Calculus Curriculum......Page 119
Early Research in Learning Calculus: The Cognitive Difficulties......Page 120
The Role of Technology......Page 121
The Role of Historical Perspective and Other Approaches......Page 122
The Transition Between Secondary and Tertiary Education......Page 123
New Directions of Research......Page 124
References......Page 125
Collaborative Learning in Mathematics Education......Page 126
Origins......Page 127
Foundations......Page 128
Method......Page 129
Commognitive Theory of the Development of Mathematical Discourses......Page 130
Commognitive Theory of Factors that Shape the Learning of Mathematics......Page 131
Contributions of Commognitive Research: Past and Future......Page 132
References......Page 133
Characteristics......Page 134
References......Page 135
How CoP Connects to Developments in Theories of Learning Mathematics......Page 136
Perspectives on Issues in Different Cultures/Places......Page 137
Cross-References......Page 138
Background......Page 139
Learning as Participation in Practices......Page 140
Issues for Future Research......Page 141
Characteristics......Page 142
References......Page 144
Complexity as an Epistemological Discourse......Page 145
Complexity as a Historical Discourse......Page 146
Complexity as a Disciplinary Discourse......Page 147
Cross-References......Page 148
Introduction......Page 149
Defining CT and AT and Relating Them......Page 150
State of Research on CT/AT......Page 151
Curricular Aspects and Emerging Implications for Mathematics Education......Page 152
Acknowledgment......Page 153
References......Page 154
Characteristics......Page 155
Background......Page 159
Radical and Social Constructivism in Mathematics Education......Page 161
A Short List: Impact of Constructivism in Mathematics Education......Page 163
References......Page 164
Introduction......Page 166
Meanings of ``Experiment´´......Page 167
Meanings of Teaching in a Teaching Experiment......Page 168
The Role of a Witness of the Teaching Episodes......Page 169
Appendix: Example Studies Using Teaching Experiment Methodology......Page 170
References......Page 171
CE´s Background Assumptions......Page 173
Principles......Page 174
A Method of Documenting Practice and Research on Practice: The PTHAS......Page 175
References......Page 176
Creativity......Page 177
Giftedness and Ability......Page 178
Giftedness and Creativity......Page 179
Empirical Research......Page 180
Conceptual Relationships......Page 181
Giftedness and Creativity in Psychology and Neuroscience......Page 182
Teaching for Creativity......Page 183
References......Page 184
Critical Education......Page 186
Some Issues in Critical Mathematics Education......Page 187
Some Notions in Critical Mathematics Education......Page 188
Critical Mathematics Education for the Future......Page 189
References......Page 190
Definition......Page 191
Critical Thinking and Mathematical Reasoning......Page 192
Critical Thinking and Applications of Mathematics......Page 193
Further Unresolved Issues......Page 194
References......Page 195
Diversity and Uses of Cultural Mathematical Tools......Page 196
Diversity and Cultural and Mathematical Identities......Page 197
Diversity and Teachers´ Social Representations of Cultural Differences......Page 198
References......Page 199
Introduction......Page 200
Perceptions of Mathematical Success......Page 201
References......Page 203
Definition of Curriculum Resources......Page 204
Design and Quality of Curriculum Resources......Page 205
The ``Use´´ of Curriculum Resources......Page 206
Cross-References......Page 207
References......Page 208
Changing Views on Teaching Statistics Over the Years......Page 209
What Does Research Tell Us About Teaching and Learning Statistics?......Page 210
Teaching and Learning......Page 211
References......Page 212
Counting......Page 213
Conclusion......Page 214
Different Theoretical Perspectives on What a Deductive Inference Is......Page 215
Purposes of Deductive Reasoning and Proof......Page 217
Students´ Proving Abilities, Conceptions, and Perceptions......Page 218
What Do Students and Teachers Think the Role of Proof Is?......Page 219
How Can We Have Proof Serve the Functions of Providing Insight, Promoting Discovery, and Illustrating Methods?......Page 220
References......Page 221
Characteristics......Page 222
References......Page 223
The Origins and Need for Design Research......Page 224
Interventionist and Iterative......Page 225
Some Issues and Challenges......Page 226
Sources of Inspiration......Page 227
References......Page 228
Definition......Page 229
Paradoxes of the Didactical Contract......Page 230
Observations of Reactions of Teachers to Difficulties......Page 231
Predicting and Explaining Certain Long-Term Effects......Page 232
Extensions......Page 233
Definition......Page 234
DE as a Research Methodology......Page 235
Realizations......Page 236
Challenges and Perspectives......Page 237
Didactical Situation......Page 238
Teaching Methods......Page 239
The Project of a Mathematical Science: Didactique......Page 240
Types of Mathematical Knowledge, Reference Knowledge (Savoirs)......Page 241
Types of Mathematical Situations Characteristic of Activities, of Pieces of Knowledge, and of Pieces of Mathematical Learning......Page 242
Some of the Results of Research on Didactical Situation......Page 243
Research Perspectives......Page 244
References......Page 245
Scope......Page 246
Enlargement of the Object of Study......Page 247
The Need for Researchers´ Own Epistemological Models......Page 248
References......Page 249
Relation with Realistic Mathematics Education......Page 250
Mathematics-Related Analyses Constituting the Didactics of Mathematics......Page 251
Learning......Page 252
Teaching......Page 253
References......Page 254
Introduction......Page 255
Poststructural Approaches......Page 257
Mathematical Discourse, Thinking, and Learning......Page 258
Definition......Page 259
To Integrate Discrete Mathematics into the School Curriculum: A Current Challenge......Page 260
Accessible Problems and Concepts......Page 261
Several Ways of Questioning, Proving, and Modeling......Page 262
Interesting Perspectives for Research in Mathematics Education......Page 264
References......Page 265
Foundations......Page 266
Strands......Page 267
Methods......Page 268
Introduction......Page 269
Sources of the Approach......Page 270
The Documentational Approach to Didactics: A Holistic Approach to Teachers´ Work......Page 271
Deepening the Approach: Schemes and Systems......Page 273
Reflexive Investigation: A Developing Methodological Construct......Page 275
Perspectives for Further Evolutions......Page 277
References......Page 278
Characteristics......Page 279
References......Page 280
Operating on Unknowns......Page 281
Reasoning About Physical Quantities and Measures......Page 282
References......Page 283
History......Page 284
Ways of Teaching Mathematics to Young Children......Page 286
Information and Communication Technology......Page 287
Future Perspectives in Early Childhood Mathematics Education......Page 288
Education of Facilitators (for Educators of Practicing Teachers)......Page 289
Background......Page 290
Mathematics Teacher Educators´ Knowledge, Skills, and Practice......Page 291
Education and Development of Mathematics Teacher Educators......Page 292
References......Page 293
Education of Professional Development Providers (for Educators of Practicing Teachers)......Page 294
Characteristics and Origin......Page 295
Implementation and Adaptation......Page 297
Some Definitional Differences in Mathematics Education......Page 298
Dienes´ Contributions to Embodied Mathematics......Page 299
Characteristics......Page 300
References......Page 304
Behavioral Engagement......Page 305
Social Engagement and Opportunities to Engage......Page 306
References......Page 307
Epistemological Obstacles in Mathematics Education......Page 308
References......Page 310
Characteristics......Page 311
Cross-References......Page 314
Introduction......Page 315
Conceptual Foundations of Ethnomathematics......Page 317
Current Work in Ethnomathematics......Page 319
Characteristics......Page 320
Design-Based Assessment......Page 322
References......Page 327
Features......Page 329
References......Page 330
Lee Shulman......Page 331
Mathematical Knowledge for Teaching......Page 332
The Knowledge Quartet......Page 333
References......Page 334
Definition and Brief History......Page 335
Overcoming Learning Difficulties......Page 336
References......Page 337
Historical Overview of Gender and Mathematics Education Research......Page 339
Theoretical Considerations......Page 341
Cross-References......Page 342
Introduction to the Literature on Gesture......Page 343
Definition of Gesture in Mathematics Education......Page 344
References......Page 346
Introduction......Page 347
Definition of Mathematical Giftedness and Its Relativity......Page 349
Mathematical Expertise and Mathematical Giftedness......Page 350
Mathematical Creativity, Insight, and Mathematical Giftedness......Page 351
Cognitive and Neurocognitive Characteristics Associated with Mathematical Giftedness......Page 352
Affect and Personality......Page 353
Development of Mathematical Ability......Page 354
References......Page 355
Definition......Page 358
References......Page 360
Characteristics......Page 362
History and Epistemology of Mathematics: An Ever-Increasing Interest for New Conceptions and Practices in Mathematics Education......Page 364
Epistemological Contributions......Page 366
Cultural Contributions......Page 367
History of Mathematics in Teachers´ Training......Page 368
History as an Instrument for an Interdisciplinary Approach in Teaching......Page 369
History of Mathematics in the Classroom......Page 370
Current Concerns and Emergent Questions in the Field......Page 371
References......Page 372
General Education and Professional Training in Mathematics......Page 373
Mathematics in Secondary Schooling......Page 374
Curriculum......Page 375
Textbooks for Mathematics......Page 376
Mathematics in the Global World......Page 377
Research into History of Mathematics Education as a Field......Page 378
References......Page 379
Main Text......Page 380
Comparative Studies of School Mathematics......Page 381
Becoming Scientific......Page 382
Studying the Teaching of Mathematics......Page 383
References......Page 384
Definition......Page 385
Explanation of the Construct......Page 386
References......Page 387
Introduction......Page 389
Different Forms of Mathematics......Page 390
Teacher Education in an Immigration Context......Page 391
Immigrant Parents´ Perceptions of Mathematics Education......Page 392
References......Page 393
Immigrant Teachers in Mathematics Education......Page 395
Classroom Practice......Page 397
Mathematics......Page 398
Introduction......Page 399
Gaining Western Mathematics......Page 400
Ensuring Access and Control of the Decision Making......Page 401
References......Page 402
What is Informal Learning?......Page 403
Consciousness of Concepts Versus Non-consciousness Concepts......Page 405
Status of Knowledge......Page 406
Models of Formal Knowledge and Informal Learning in Mathematics......Page 407
An Alternative Approach......Page 408
Further Reading......Page 409
Characteristics......Page 410
References......Page 413
Definition......Page 414
Historical Background......Page 415
IBME and Mathematics Education Research......Page 416
Research on Teachers´ Practices Regarding IBME......Page 417
References......Page 418
Characteristics......Page 419
References......Page 421
Mediated Action as a Source of Tensions......Page 422
Instrumentation/Instrumentalization Dialectic......Page 423
Instrumentalization as a Key Feature of the Instrumental Approach to Didactics......Page 424
Taking into Account the Evolution of Artifacts......Page 427
Taking into Account the Teacher´ Role for Designing the Artifacts Environment......Page 428
Rethinking Instrumentalization from the Teacher´s Perspective......Page 431
Acknowledgment......Page 432
References......Page 433
Instrumentation and Instruction......Page 434
The Critical Notion of Affordance......Page 435
The Dialectical Relationships Between Artifact and Instrument......Page 436
An Essential Dialectic Relationship between Instrumentation and Instrumentalization......Page 438
From a Set of Artifacts to a System of Instruments: The Crucial Notion of ``Orchestration´´......Page 439
Conclusion: From Student Instrumentation to Teacher Instrumentation......Page 440
References......Page 441
Definition......Page 442
Perspectives for Future Research......Page 443
References......Page 444
Interdisciplinarity and Mathematics (Education)......Page 445
References......Page 448
What Are ICS?......Page 449
Why Are ICS Important?......Page 450
Some Issues with ICS......Page 451
The Way Forward......Page 452
References......Page 453
Introduction......Page 454
Interpretative Knowledge......Page 455
Main Implications for Teacher Education......Page 457
Definition......Page 458
Characteristics, Approaches, and Role in Mathematics Education......Page 459
Cross-References......Page 461
References......Page 462
Introduction......Page 464
Learning Games, the Double Dialectics Reticence-Expression/Contract-Milieu, the Equilibration Process......Page 465
Cooperative Engineering......Page 466
References......Page 467
Introduction......Page 469
Theoretical Perspectives on Language Background in Mathematics Education......Page 470
Language Background and Learning and Teaching Mathematics......Page 471
Plurilingual Societies......Page 472
Language Background and Researchers in Mathematics Education......Page 473
References......Page 474
Characteristics......Page 475
Definition......Page 476
Intellectual Autonomy......Page 477
Classroom Environment......Page 478
Mathematical Discourse......Page 479
References......Page 481
Introduction......Page 482
Two Sorts of Mathematical Skills to Be Learned......Page 483
The Specificity of Mathematics Learning Difficulties......Page 485
References......Page 486
Computer Scaffolded Learning......Page 487
Computer-Supported Collaborative Learning......Page 490
References......Page 491
Origin......Page 492
References......Page 494
Characteristics......Page 495
Characteristics......Page 497
Exploring the Object of Learning......Page 498
References......Page 499
Historical Developments and Contexts......Page 500
Lesson Study Adopted as a Model of Professional Development in Other Countries......Page 501
Preliminary Work......Page 502
Different Approaches to the Learning and Teaching of Linear Algebra Concepts......Page 503
The Use of Realistic Problems and Models in the Teaching and Learning of Linear Algebra......Page 504
References......Page 505
Definition......Page 506
Logic and Mathematical Language......Page 507
The Role of Logic in Mathematical Proof, Argumentation, and Reasoning......Page 508
Definition......Page 509
Characteristics......Page 510
Instruction in Mathematical Logic......Page 511
Cross-References......Page 512
References......Page 513
Manipulatives and Mathematics Education......Page 514
Critical Issues......Page 516
Some Examples of Manipulatives and Tasks......Page 517
Pascaline......Page 518
Pantographs......Page 519
References......Page 520
The Evolvement of Mathematical Abilities......Page 521
Characterizing Different Students on the Spectrum of Mathematical Abilities......Page 522
Measuring and Evaluating Students´ Mathematical Ability......Page 523
References......Page 524
Developments......Page 525
Characteristics......Page 526
Stoffdidaktik......Page 527
An Epistemological Program......Page 528
Mathematical Knowledge for Teaching......Page 529
Unresolved Issues......Page 530
References......Page 531
Definition/Introduction......Page 532
Slope and Proportional Reasoning......Page 533
Rate of Change......Page 534
Covariance......Page 535
Functions......Page 537
Generalizing......Page 538
Types of Mathematical Generalization......Page 539
Strategies in Pattern Generalizing......Page 540
Justification of Mathematical Generalization......Page 543
References......Page 544
Definition/Introduction......Page 547
Theoretical Models Guiding Research on Geometry Learning......Page 548
Proofs......Page 550
Genres of Investigation......Page 551
References......Page 554
Piagetian Views......Page 557
Non-Piagetian Views: Van Hiele Levels of Geometric Thinking......Page 559
Piagetian Views......Page 560
Non-Piagetian Views: Cognitively Guided Instruction......Page 562
References......Page 564
Characteristics......Page 565
Introduction: What Is Mathematical Language?......Page 567
Characteristics of Mathematical Language......Page 568
Variations in Language and Thinking Mathematically......Page 569
Introduction......Page 570
The Mathematics Education Perspectives on MLD: The Issues of Prevention and Remediation......Page 571
Communicating Across Fields......Page 573
References......Page 574
Definition......Page 575
Characteristics and Delimitation......Page 576
Motivations for Introducing Mathematical Literacy......Page 577
Critique and Further Research......Page 578
References......Page 579
Characteristics......Page 580
Theoretical Debate on Mathematical Modelling: Historical Development and Current State......Page 581
The Modelling Process as Key Feature of Modelling Activities......Page 583
Westerhever Lighthouse......Page 584
Further Explorations and Extensions......Page 585
Modelling Competencies and Their Promotion......Page 586
Cross-References......Page 587
Definition......Page 588
Mathematical Proof......Page 589
Argumentation and Proof......Page 590
Practical Classroom Approaches......Page 591
References......Page 592
Definitions......Page 593
Characteristics......Page 594
Research......Page 596
References......Page 598
Background......Page 599
Eliciting Evidence of Student Learning......Page 600
Acting on Evidence of Student Learning......Page 601
References......Page 602
Curriculum......Page 603
Curriculum Evaluation......Page 604
Models of Mathematics Curriculum Evaluation......Page 605
Mathematics Curriculum Evaluation and Large-Scale Reforms......Page 606
References......Page 608
Definition......Page 609
References......Page 611
Rationale......Page 612
Teacher Learning Theory......Page 613
Structure and Characteristics......Page 614
Institutions......Page 615
Who Teaches Future Teachers?......Page 616
Professional Teacher´s Competences......Page 617
References......Page 619
Mathematics Teacher Educators: Definition......Page 620
Mathematics Teacher Educators´ Learning Through Research......Page 621
Mathematics Teacher Educators´ Learning Through Action Research and Intervention Research......Page 622
References......Page 623
Identity Research in Mathematics Education and MTI......Page 624
Clusters of Research in MTI......Page 625
References......Page 626
Definition and Historical Background......Page 627
Different Cultures Shaping Different Forms of Interaction Between Teachers and Curricula......Page 628
Teachers and Curricula Within a Collaborative Perspective......Page 629
Open Questions......Page 630
References......Page 631
There Is Mathematics Everywhere......Page 632
Mathematics in Action......Page 633
New Challenges......Page 634
Definition......Page 635
Characteristics......Page 636
References......Page 637
Why Do We Need a Dynamic Framework Relating to Teachers´ Practices?......Page 638
Meta-Didactical Transposition......Page 640
The Meta-Didactical Praxeologies......Page 641
The Role of the Broker......Page 643
The Double Dialectic......Page 644
Applications, Integration, and Evolution of the Meta-Didactical Transposition Framework......Page 645
Definition......Page 646
Metaphors for Metaphor......Page 647
Metaphors for Teaching and Learning......Page 648
Examples of Metaphors for Multiplication......Page 649
References......Page 650
Definition......Page 652
Characteristics......Page 653
Models of In-Service Mathematics Teacher Education Professional Development......Page 654
References......Page 657
Characteristics......Page 659
References......Page 660
Attribution Theory......Page 662
Affect......Page 663
References......Page 664
Definition of Mathematics Teacher Noticing......Page 665
Contributions of Mathematics Teacher Noticing......Page 666
The Empty Number Line......Page 667
An Alternative Approach......Page 669
Effect Studies......Page 670
Introduction......Page 671
Natural Numbers, Operations, and Estimation......Page 672
Number Sense......Page 674
Cross-References......Page 675
Teaching of Rational Numbers......Page 676
Irrational Numbers......Page 677
References......Page 678
Characteristics......Page 681
Measuring PCK......Page 682
References......Page 683
History......Page 684
Analytical Framework......Page 685
Defusing the Debates......Page 687
References......Page 688
History......Page 689
Strong Political Perspectives......Page 690
Cross-References......Page 691
Characteristics......Page 692
Psychoanalytic Approaches......Page 694
References......Page 695
What Is Included in Preparation and Professional Development?......Page 696
University Provision for Both New and Experienced Teachers of Mathematics......Page 697
Teachers´ Learning through Engagement in Research and Development Projects......Page 698
Mathematics Support......Page 699
References......Page 700
Probabilistic and Statistical Thinking......Page 701
Probabilistic Thinking in Probability Education......Page 702
Statistical Thinking in Statistics Education......Page 704
The Data Deluge......Page 705
References......Page 706
Different Meanings of Probability......Page 708
Probability in the School Curriculum......Page 709
Intuitions and Misconceptions......Page 710
Challenges in Teaching Probability......Page 711
Introduction......Page 712
Focusing of Problems in the Development of Mathematics......Page 713
Mathematics Education and Problem-Solving Developments......Page 714
Curriculum Proposals and Instruction......Page 715
Digital Technologies and Mathematical Problem-Solving......Page 716
Directions for Future Research......Page 717
References......Page 718
Characteristics......Page 719
Data-Informed and Knowledge-Based Enquiry......Page 720
Impact and Research......Page 721
Characteristics......Page 722
The Piagetian Approach: Research on Conceptions and Conceptual Change......Page 723
Departing from Piaget: From Research on Concept Formation to Teaching Experiments......Page 724
Open Issues......Page 725
References......Page 726
Characteristics......Page 728
Definition......Page 730
Mathematical Perspectives......Page 731
Asking as Enquiring......Page 732
Classroom Ethos......Page 733
Internalizing Questions......Page 734
References......Page 735
The Onset of RME......Page 737
The Core Teaching Principles of RME......Page 738
Various Local Instruction Theories......Page 739
Cross-References......Page 740
Characteristics......Page 741
Cross-References......Page 744
Reflective Practitioner in Mathematics Education......Page 745
References......Page 747
Cognitive Requirements for Understanding Conversions......Page 748
Cognitive Requirements for Understanding Treatments......Page 749
Knowledge and Recognition in Mathematics Understanding and Learning......Page 750
References......Page 751
Probability and a First Approach to Risk......Page 752
Definitions of Risk......Page 753
Risk and Hazard......Page 754
Knight´s Conception of Risk and Uncertainty......Page 755
Types of Situations and Analytical Investigation of a Situation under Risk......Page 756
Rational Approach......Page 757
Mathematical Approach......Page 758
Paradigmatic Contexts for Decisions under Uncertainty......Page 759
Risk with Small Probabilities......Page 760
Cross-References......Page 762
References......Page 763
Psychological Aspects of Risk......Page 764
Probability and Utility......Page 765
Inconsistencies: Psychologically and Otherwise......Page 766
Heuristics and Biases: The Approach by Kahneman and Tversky......Page 767
Twin Concepts of Probability and Risk......Page 768
Probabilistic Literacy Is Risk Literacy......Page 769
Tools to Foster Risk Literacy......Page 772
Conclusions......Page 775
References......Page 777
Definition......Page 778
Pedagogy of Risk......Page 779
Rural and Remote Mathematics Education......Page 780
Opportunities in Rural and Remote Settings......Page 781
References......Page 782
Tutoring Learning......Page 783
Students´ Difficulties and Their Origins......Page 786
The Proof Practices of Professional Mathematicians......Page 787
Providing Help to the Students......Page 788
References......Page 789
Definitions and Background......Page 790
Semiotic Lenses and Their Uses......Page 791
Questions for Research on Semiosis in Learning and Teaching Mathematics......Page 792
References......Page 793
Main Problematic Issue of Service-Courses......Page 794
Students´ Practices......Page 795
Final Remark......Page 796
References......Page 797
Definition and Teaching Situation......Page 798
Piaget......Page 799
Freedom in Selecting Geometrical Context, Content, and Teaching/Learning Paradigms......Page 800
High-School Geometry or Shapes in Space as Ingredients for Constructing a Theory......Page 801
Cross-References......Page 802
Introduction......Page 803
Mathematics Classes in Single-Sex Schools......Page 804
Mathematics Classes in Sex-Segregated Classes in Coeducational Schools......Page 805
History......Page 806
Knowing......Page 807
Implication for Teaching......Page 808
Definition......Page 809
Sociopolitical Analyses......Page 810
Explanatory and Analytical Frameworks......Page 811
Research on Action or Intervention......Page 812
References......Page 813
Introduction......Page 814
Socioepistemology: Theoretical Foundations, Main Concepts, and Specific Methodologies......Page 815
Example of the Problematization of Knowledge in Use: Successive Variation......Page 817
Main Research Questions and Results......Page 818
References......Page 820
Topic and History......Page 821
Issues of Research......Page 822
References......Page 825
Sociomathematical Norms......Page 826
Growth of the Concept......Page 827
Common Issues......Page 828
References......Page 829
Characteristics......Page 830
S