دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ارتباطات: ارتباطات از راه دور ویرایش: نویسندگان: Mohammed Usman, Mohd Wajid, Mohd Dilshad Ansari سری: Artificial Intelligence AI: Elementary to Advanced Practices ISBN (شابک) : 0367422492, 9780367422493 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 296 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Enabling Technologies for Next Generation Wireless Communications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فعال کردن فناوری ها برای ارتباطات بی سیم نسل بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژیهای فعال برای ارتباطات بیسیم نسل بعدی اطلاعات بهروزی را در مورد روندهای نوظهور در سیستمهای بیسیم، فناوریهای توانمند و الگوهای کاربردی در حال تکامل آنها ارائه میدهد.
این کتاب شامل آخرین روندها و تحولات به سمت نسل بعدی ارتباطات بی سیم است. این الزامات نسل بعدی سیستم های بی سیم، محدودیت های فن آوری های موجود در ارائه آن الزامات و نیاز به توسعه فن آوری های جدید رادیکال را برجسته می کند. تمرکز آن بر گردآوری اطلاعات در مورد پیشرفتهای مختلف فناوری است که برای برآوردن الزامات سیستمهای ارتباطی بیسیم آینده و کاربردهای آنها حیاتی هستند. موضوعات مورد بحث شامل مسائل طیف، برنامه ریزی شبکه، پردازش سیگنال، فرستنده، گیرنده، فناوری های آنتن، کدگذاری کانال، امنیت و کاربرد یادگیری ماشین و یادگیری عمیق برای سیستم های ارتباطی بی سیم است. این کتاب همچنین اطلاعاتی در مورد توانمندسازی مدلهای تجاری برای سیستمهای بیسیم آینده ارائه میدهد.
این کتاب بهعنوان منبعی برای محققان و متخصصان در سراسر جهان، از جمله متخصصان صنعت، فنآوران، تصمیمگیرندگان سیاست، دانشگاهیان و دانشجویان فارغالتحصیل مفید است. .
Enabling Technologies for Next Generation Wireless Communications provides up-to-date information on emerging trends in wireless systems, their enabling technologies and their evolving application paradigms.
This book includes the latest trends and developments toward next generation wireless communications. It highlights the requirements of next generation wireless systems, limitations of existing technologies in delivering those requirements and the need to develop radical new technologies. It focuses on bringing together information on various technological developments that are enablers vital to fulfilling the requirements of future wireless communication systems and their applications. Topics discussed include spectrum issues, network planning, signal processing, transmitter, receiver, antenna technologies, channel coding, security and application of machine learning and deep learning for wireless communication systems. The book also provides information on enabling business models for future wireless systems.
This book is useful as a resource for researchers and practitioners worldwide, including industry practitioners, technologists, policy decision-makers, academicians, and graduate students.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Editors List of Contributors Chapter 1: Technology Evolution of Wireless Communications: A Survey and Look Forward 1.1 Introduction 1.2 Historical Background and Evolution of Wireless Systems 1.3 Application Scenarios of Next Generation Wireless Systems 1.4 Requirements of Next Generation Wireless Systems 1.5 Need for 5G and Beyond 1.6 Enabling Technologies of Next Generation Wireless Systems 1.6.1 Spectrum 1.6.2 mmWave and Terahertz Spectral Bands 1.6.3 Visible Light Communication (VLC) 1.6.4 Massive MIMO (Large-Scale MIMO) 1.6.5 Ultra-Dense Small-Cell Networks 1.6.6 Network Slicing 1.6.7 Artificial Intelligence 1.7 Conclusions References Chapter 2: Enabling Technologies and Enabling Business Models for Next Generation Wireless Communications 2.1 Introduction 2.2 Main Contributions and Related Works 2.3 Enabling Technologies and Enabling Business Models for Wireless Communications 2.4 Assessment of Enabling Technologies and Enabling Business Models for Previous-Generation, Current-Generation, and Emerging-Generation Wireless Communications 2.5 Assessment of Enabling Technologies and Enabling Business Models for Next Generation Wireless Communications 2.6 Integrated Framework for Enabling Technologies and Enabling Business Models for Next Generation Wireless Communications 2.7 Conclusions Notes References Chapter 3: Enabling Technologies for Internet of Everything 3.1 Introduction 3.2 Enabling Technologies for IoE 3.2.1 Cloud Computing 3.2.2 Fog Computing 3.2.3 Edge Computing 3.2.4 Machine to Machine 3.2.5 Machine Learning 3.3 Data Management and Security in IoE 3.4 System Management and Protection for IoE 3.5 Applications of IoE 3.5.1 Healthcare 3.5.2 Power 3.5.3 Education System 3.5.4 Smart Environment 3.6 Enabling IoE in Developing Countries 3.7 Conclusion References Chapter 4: Power Allocation Techniques for Visible Light: Nonorthogonal Multiple Access Communication Systems 4.1 Introduction 4.2 Related Work 4.2.1 Visible Light Communication 4.2.2 Nonorthogonal Multiple Access 4.2.3 Visible Light–Nonorthogonal Multiple Access Communication System 4.3 Problem Formulation and Potential Contribution 4.4 System Model for VL-NOMA Communication System 4.5 Power Allocation Techniques with Decoding Order for VL-NOMA Communication Systems 4.6 Conventional Power Allocation Scheme for VL-NOMA Communication System 4.7 Inverse Power Allocation Scheme for VL-NOMA Communication System 4.8 Adaptive Power Allocation Scheme for VL-NOMA Communication System 4.9 Gain Ratio Power Allocation Scheme for VL-NOMA Communication System 4.10 User Data Rate for GRPA VL-NOMA Communication System 4.11 Joint Power Allocation for VL-NOMA Communication System 4.12 Optimal PA Technique in VL-NOMA Communication System 4.13 Comparison of Power Allocation Techniques 4.14 Summary References Chapter 5: Multiantenna Systems: Large-Scale MIMO and Massive MIMO 5.1 Introduction 5.2 Massive MIMO Uplink and Downlink 5.3 Spectral Efficiency (SE) 5.4 Area Throughput 5.5 Precoding 5.5.1 Single-Cell (SC) Precoding Techniques 5.5.1.1 Matched Filter (MF) 5.5.1.2 Zero Forcing Precoding 5.5.1.3 Regularized Zero Forcing 5.5.1.4 Truncated Polynomial Expansion (TPE) 5.5.1.5 Phased Zero Forcing 5.5.2 Precoding Techniques for the Downlink of Multicell Scenario 5.5.2.1 Max SINR Precoding 5.5.2.2 Multilayer Precoding 5.5.2.3 Quantized Precoders for Massive MIMO 5.5.2.4 Nonlinear Quantized Precoding for Massive MIMO 5.5.2.5 Multiuser Massive MIMO with One-Bit Quantized Precoding 5.6 Hybrid Precoding 5.7 Massive MIMO with Linear Precoding and Detection 5.8 Energy Efficiency (EE) References Chapter 6: Channel Estimation Techniques in the MIMO-OFDM System 6.1 Introduction 6.2 Conventional MIMO 6.3 Massive MIMO 6.4 Channel Estimation Techniques 6.4.1 Least Square (LS) Estimation 6.4.2 Maximum Likelihood Estimation 6.4.3 MMSE Channel Estimation 6.4.4 Pilot- or Training-Based Channel Estimation 6.4.5 Blind Channel Estimation 6.4.6 Semi-Blind Channel Estimation 6.5 Strengths and Limitations of Existing Estimation Techniques 6.6 Conclusion References Chapter 7: Localization Protocols for Wireless Sensor Networks 7.1 Introduction 7.2 Classification of Localization Schemes 7.3 Range-Based Localization 7.4 Range-Free Localization 7.5 Anchor-Based Localization 7.6 Anchor-Free Localization 7.7 Directional Localization 7.8 Conclusion References Chapter 8: Distributed Intelligent Networks: Convergence of 5G, AI, and IoT 8.1 Introduction 8.2 Global Impact of 5G and AIoT 8.3 Requirements for Next Generation Distributed Intelligence Wireless Networks 8.4 Enabling Technological Uses Cases for 5G and AIoT Systems 8.4.1 Industry 4.0 Use Case 1: Automated Factories and Remote Inspection 8.4.2 Transportation and Logistics Use Case 1: Connected Intelligent Vehicles 8.4.3 HealthCare 5.0 Use Case 1: Precision Medicine Use Case 2: Remote Diagnosis and Surgeries 8.4.4 Security and Safety Use Case 1: Intelligent Surveillance Use Case 2: Border/Immigration Control and Emergency Services 8.4.5 Entertainment and Retail Use Case 1: 5G Cloud Gaming Use Case 2: Personalized Shopping Experience 8.4.6 Smart Cities 8.5 Conclusion References Chapter 9: Antenna Design Challenges for 5G: Assessing Future Direction 9.1 Introduction 9.2 Antenna Design Flow 9.3 Antenna Integration with Radio Transceiver ICs 9.3.1 Antenna-in-Package (AiP) 9.3.2 Antenna-on-Chip (AoC) 9.4 Multiple Beam Antenna Patterns and Their Characterization 9.4.1 Antenna Pattern Characterization 9.4.1.1 Gain ( G) 9.4.1.2 Directivity ( D) 9.4.1.3 Reflection Coefficient 9.4.1.4 Radiation Pattern 9.4.1.5 Effective Isotropic Radiated Power (EIRP) 9.4.1.6 Antenna Coverage Efficiency 9.4.1.7 Effective Beam-Scanning Efficiency 9.5 The Antenna Design Challenges for 5G Communication 9.5.1 High Gain Arrays 9.5.2 Beamforming and Beamsteering 9.5.3 Massive MIMO 9.5.4 Multiband with Backward Compatibility 9.5.5 Compactness 9.5.6 Diversity Performance – MIMO 9.5.6.1 Envelope Correlation Coefficient (ECC) 9.5.6.2 Mean Effective Gain (MEG) 9.5.6.3 Channel Capacity 9.5.6.4 Total Active Reflection Coefficient (TARC) 9.5.7 Antenna Placement 9.5.8 Antenna Environment 9.5.8.1 Surroundings within Mobile 9.5.8.2 Influence of User’s Hand 9.5.8.3 Propagation Channels 9.6 Radiation Exposure in 5G Communication 9.6.1 Specific Absorption Rate (SAR) 9.6.2 Power Density (PD) 9.6.3 Antenna Measurement 9.7 Conclusion References Chapter 10: Design and Simulation of New Beamforming: Based Cognitive Radio for 5G Networks 10.1 Introduction 10.2 Evading the Eergy Crunch: Cognitive Radio 10.2.1 Cognitive Radio Architecture 10.3 Introduction to Beamforming 10.3.1 Beamforming System Approaches 10.3.2 Beamforming Signals 10.3.3 Types of Beamforming 10.3.4 IEEE 802.11 ad Beamforming Protocol 10.4 System Model 10.5 Optimization Problem 10.6 Framework for Optimal Solution 10.7 Results 10.8 Conclusion References Chapter 11: Image Transmission Analysis Using MIMO-OFDM Systems 11.1 Introduction 11.2 MIMO Systems 11.2.1 Spatial Multiplexing (SM) 11.2.2 Beamforming 11.2.3 Spatial Diversity (SD) 11.2.3.1 Diversity Combining Techniques 11.2.3.2 Selection Combining (SC) 11.2.3.3 Maximal Ratio Combining (MRC) 11.2.3.4 Equal Gain Combining (EGC) 11.3 Simulation Results 11.3.1 Beamforming 11.3.2 Maximal Ratio Combining 11.3.3 Selection Combining 11.4 Conclusion References Chapter 12: Physical Layer Security in Two-Way Wireless Communication System 12.1 Introduction: Background and Motivations 12.2 Secrecy at the Physical Layer in the TWC with a Number of Untrusted AF Relays That Harvest Energy from RF Sources and Operate in Half- Duplex Mode 12.2.1 A System Model of TWC with a Number of Untrusted AF Relays 12.2.1.1 Power allocation to the cognitive nodes 12.2.1.2 Secrecy Capacity and Relay Selection 12.2.2 SOP Formulation with Untrusted AF Relays 12.2.3 Numerical Results Based on the SOP in Two-Way Communication with AF Relays 12.3 Secrecy at the Physical Layer in TWC with Two Half-Duplex DF Relays in the Presence of an External Eavesdropper 12.3.1 System Model of Two-Way Communication with DF Relays 12.3.1.1 Signal strength 12.3.1.2 Global secrecy capacity 12.3.2 SOP Formulation with DF Relays and Optimality of Source Power and Fraction of Relay Power 12.3.2.1 SOP formulation 12.3.2.2 Optimality of source power and fraction of relay power 12.3.3 Numerical Results Based on the SOP and Observation of Optimal Value 12.4 Conclusion References Chapter 13: Design and Simulation of Bio-Inspired Algorithm: Based Cognitive Radio for 5G Networks 13.1 Introduction 13.2 Cognitive Radio 13.3 Introduction to Genetic Algorithm 13.3.1 GA Nomenclature 13.3.2 Classification of GA 13.3.3 Algorithm Outline 13.3.4 Fitness Value 13.3.5 Mutation 13.3.6 Crossover 13.4 System Model 13.5 Optimization Problem 13.6 Framework for Optimal Solution 13.7 Results and Discussions SCENARIO 1: P A AAA: When only one PU is in attendance and all other slots are vacant SCENARIO 2: P P AAA: When one PU and one secondary user (SU) are in attendance and the remaining three slots are vacant SCENARIO 3: P PPA A: When one PU and two SUs are in attendance, and the remaining two slots are vacant SCENARIO 4: P PPP A: When One PU and Three SUs are in Attendance, and the Remaining One Slot is Vacant SCENARIO 5: P PPP P: When All Slots are Occupied 13.8 Conclusion and Future Scope References Chapter 14: Evaluating the Performance of Quasi and Rotated Quasi OSTBC System with Advanced Detection Techniques for 5G and IoT Applications 14.1 Introduction 14.2 Multiplexing Gain and Its Relation with Diversity 14.3 System Model 14.3.1 K-Best Algorithm for Sphere Decoder 14.3.2 Capacity of Rotated Quasi OSTBC Channels 14.3.3 Decoding of R-QOSTBC 14.4 Results and Discussion 14.5 Conclusion References Index A B C D E F G H I J K L M N O P Q R S T U V W Z