دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Gaurav Saini, Ramani Kannan, Ernesto Benini, Krishna Kumar سری: ISBN (شابک) : 1032224762, 9781032224763 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 246 [247] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Enabling Methodologies for Renewable and Sustainable Energy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای توانمندسازی برای انرژیهای تجدیدپذیر و پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف این کتاب ارائه جنبههای عملی و مقدمهای برای کاربردهای ابزارهای مختلف پیشرفت فناوری، مانند هوش مصنوعی، یادگیری ماشین برای طراحی، دادههای بزرگ، محاسبات ابری و اینترنت اشیا، برای مدلسازی، مشخصسازی است. بهینه سازی، پیش بینی و انجام پیش بینی عملکرد بهره برداری از انرژی های تجدیدپذیر. در ادامه راههای جدید منابع انرژی مانند تولید انرژی هیدروژن و فنآوریهای ذخیرهسازی انرژی از جمله سیاستهای موجود و مطالعات موردی برای درک بهتر تولید انرژیهای تجدیدپذیر را مورد بحث قرار میدهد.
ویژگیها: span>
این کتاب برای محققان و دانشجویان فارغ التحصیل در مهندسی انرژی های تجدید پذیر، مهندسی کامپیوتر و مکانیک، فناوری های جدید و سیستم های هوشمند طراحی شده است.
This book aims to provide practical aspects of, and an introduction to, the applications of various technological advancement tools, such as AI, machine learning to design, big data, cloud computing, and IoT, to model, characterize, optimize, forecast, and do performance prediction of renewable energy exploitation. It further discusses new avenues for energy sources such as hydrogen energy generation and energy storage technologies including existing policies and case studies for a better understanding of renewable energy generation.
Features:
This book is aimed at researchers and graduate students in renewable energy engineering, computer and mechanical engineering, novel technologies, and intelligent systems.
Cover Half Title Title Page Copyright Page Table of Contents Editors Contributors Preface Chapter 1 Evolution of Sustainable Energy from Power Concrete Construction 1.1 Outline of Sustainable Energy 1.2 Fabrication Method 1.2.1 Composite Layer 1.2.2 Pre-Engineered Arrangements 1.3 Characteristics Assessment 1.3.1 Storage of Thermal Energy 1.3.2 Flow of Electricity from Sustainable Mode 1.3.3 Compressive Behavior 1.4 Conclusions References Chapter 2 Acetylene as a Sustainable Fuel for Diesel Engine: A Case Study 2.1 Introduction 2.1.1 Acetylene Production and Properties 2.1.2 Dual-FuelEngine 2.2 Performance Analysis 2.3 Fuel Injection Systems 2.4 Combustion Analysis 2.5 Emission Analysis 2.6 Conclusions 2.7 Future Scope Abbreviations References Chapter 3 Investigation on Stand-Alone Solar Energy Conversion System with Artificial Intelligence Techniques 3.1 Introduction 3.2 Mathematical Modeling and Simulink Model 3.2.1 An Equivalent PV System Model 3.2.2 Artificial Neural Network-BasedMPPT for Solar PV System 3.2.3 Simulink Model 3.3 Simulation Results and Discussion 3.3.1 Simulation Result of Levenberg-Based ANN MPPT Controller at Irradiance Step Change from 1000–800 to 600–400 W/m[sup(2)] with Resistive Load 3.3.1.1 PV Array Results 3.3.1.2 Boost Converter Results 3.3.1.3 Inverter Results 3.3.1.4 Load Side Results 3.4 Conclusions and Future Scope 3.4.1 Conclusions 3.4.2 Future Scope References Chapter 4 Effective Efficiency Distribution Characteristics for Different Configurations of Arc and V-Shape Ribs in Solar Air Channels: A Comparative Study 4.1 Introduction 4.2 Performance Evaluation of Solar Air Channel 4.3 Effective Efficiency Evaluation 4.3.1 Mathematical Model 4.3.1.1 Program Initialization 4.3.1.2 Useful Heat Gain Assessment 4.3.1.3 Effective Efficiency Assessment 4.3.2 Mathematical Model Validation 4.4 Results and Discussion 4.4.1 Continuous Arc and V-Shape Ribs 4.4.2 Discrete Arc and V-Shape Ribs 4.4.3 Multiple Arc and V-Shape Ribs 4.4.4 Discrete Multiple Arc and V-Shape Ribs 4.4.5 Intercomparison 4.5 Conclusions Nomenclature Subscripts References Chapter 5 Lithium-Based Batteries Charged by Regenerative Braking Using Second Quadrant Chopper 5.1 Introduction 5.2 Designing and Working of the Converter 5.2.1 V[sub(o)]–I[sub(o)] Plane and Operation of Model 5.2.1.1 Mathematical Analysis 5.2.1.2 PWM Signal to MOSFET 5.2.1.3 Addition of Closed-Loop Subsystem 5.3 Simulation Results 5.4 Conclusions References Chapter 6 Modeling and Simulation of SoC-Based BMS for Stand-Alone Solar PV-Fed DC Microgrids 6.1 DC Microgrid Architecture 6.1.1 DC Home 6.1.2 Battery Energy Storage System (BESS) 6.1.3 Addressing Economic Constraints of a DC Microgrid 6.1.4 Analyzing the Optimization Problem in the Battery Storage System 6.2 Battery Management System (BMS) 6.2.1 BESS Charge/Discharge Control Scheme 6.2.2 Bidirectional Buck-Boost Converter 6.2.3 BESS Scheduling 6.3 DC Loads 6.4 Control Scheme of Power Electronic Converters 6.4.1 MPPT Buck Converter Control Scheme 6.4.2 Implementation of Bidirectional Converter 6.4.3 Control Strategy of the Bidirectional Converter during Charging/Discharging of Battery Pack 6.4.4 DC Bus Voltage Regulation Scheme 6.5 Simulation Results 6.5.1 Mode 1: DC Bus Fed from PV Array 6.5.2 Mode 2: DC Bus Fed from Battery Bank 6.5.3 Mode 3: DC Bus Fed Initially from PV and Then from Battery Bank 6.5.4 Mode 4: DC Bus Fed Initially from Battery Bank and Then from PV Array 6.5.5 Mode 5: DC Bus Fed Initially from Battery Bank with Dynamic Load 6.5.6 Mode 6: DC Bus Fed from PV Array with Dynamic Load 6.5.7 Mode 7: DC Bus Fed Initially from Battery Bank with Battery Scheduling 6.5.8 Mode 8: DC Bus Fed Initially from Battery Bank with Battery Management 6.6 Conclusions References Chapter 7 Blockchain and Smart Grid 7.1 Introduction 7.2 Blockchain 7.2.1 Blockchain Categories 7.2.2 Features of Blockchain (Zhenget al. 2017) 7.3 Smart Grid 7.4 Blockchain in Smart Grid 7.5 Blockchain Applications in Smart Grid 7.6 Challenges and Future of Blockchain and Smart Grid 7.7 Conclusions References Chapter 8 Renewable Energy Source Technology with Geo-Spatial-Based Intelligent Vision Sensing and Monitoring System for Solar Aerators in Fish Ponds 8.1 Introduction 8.2 Literature Review 8.2.1 International Status 8.2.2 National Status 8.3 Novelty of Proposed Work 8.4 Objectives 8.5 Methodology 8.6 Preprocessing 8.6.1 Edge Detection 8.6.2 Histogram Analysis 8.6.3 Extraction of Features 8.6.4 Classification 8.6.5 Circuitry for Hardware 8.7 Results and Discussion 8.7.1 Histogram Analysis 8.7.2 Extraction of Features 8.7.3 ANN-Based Classification 8.7.4 Summary 8.8 Conclusions and Future Scope References Chapter 9 IoT-Based Dam and Barrage Monitoring System 9.1 Introduction 9.1.1 Dam 9.1.2 Dam Break Analysis 9.2 Investigations on Dam and Barrage Monitoring 9.3 Circuit Configuration for Monitoring and Control of Dams/Barrages 9.4 Conclusions References Chapter 10 Complex Hydrides: Lightweight, High Gravimetric Hydrogen Storage Materials 10.1 Introduction 10.2 Hydrogen Storage in Complex Metal Hydrides 10.2.1 Metal Borohydride 10.2.2 Metal Aluminum Alanates 10.2.3 Amide/Imidesfor Hydrogen Storage Applications 10.2.3.1 Potential Hydrogen Storage Material: Li-N-H System 10.2.3.2 Li-Mg-N-H System 10.2.3.3 Destabilization of Li-Mg-N-H through the Addition of Metal Borohydrides 10.2.3.4 Different Approaches for Improving the Hydrogen Sorption Performance of 1:2 Mg(NH[sub(2)])[sub(2)]-LiH by the Employment of a Suitable Catalyst 10.2.4 Ammonia Borane for Hydrogen Storage 10.3 Conclusions Acknowledgments Note References Chapter 11 Assessing the Feasibility of Floating Photovoltaic Plant at Mukutmanipur in India 11.1 Introduction 11.2 Proposed Site Detail 11.2.1 Site Selection Criteria 11.2.2 Proposed Site Background 11.3 Feasibility of FPV Plant at the Proposed Site 11.4 Economic Feasibility 11.5 Conclusions References Chapter 12 Floating Photovoltaic Systems: An Emerging PV Technology 12.1 Introduction 12.2 Floating PV Status 12.3 FPV Systems Design and Structure 12.3.1 Design and Structure 12.4 FPV System’s Performance and Degradation Aspects 12.4.1 Performance Analysis 12.4.2 Degradation Analysis 12.5 Evaporation in FPV Systems 12.6 Floating PV Environmental Impacts 12.7 Conclusions Acknowledgements Abbreviations References Chapter 13 Waste Heat Recovery Technologies for Sustainability and Economic Growth in Developing Countries 13.1 Introduction 13.2 Waste Heat Resources and Potentials 13.2.1 Potential Waste Heat Recovery Techniques 13.2.1.1 Waste Heat-to-Power (WHP) Technologies 13.3 Waste Heat Recovery’s Economic and Environmental Benefits 13.3.1 Limits to Effective WHR System Deployment in Developing Countries 13.3.1.1 Technical Gremlins 13.3.1.2 Business Barriers 13.3.1.3 Policy, Legislative, and Regulatory Barriers 13.3.1.4 Possible Remedies to Sustainable Development and Effective Utilization of WHR Systems in Developing Countries 13.4 WHR Technologies for Sustainability and Economic Growth in Developing Economies 13.5 Conclusions References Index