دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Prabhansu. Nayan Kumar سری: ISBN (شابک) : 0323905218, 9780323905213 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 700 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Emerging Trends in Energy Storage Systems and Industrial Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای نوظهور در سیستم های ذخیره سازی انرژی و کاربردهای صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ذخیره انرژی نقش مهمی در پشتیبانی از دستگاه های تشنه انرژی و دستیابی به منبع تغذیه پایدار با متعادل کردن بهینه عرضه و تقاضا با نیاز روزافزون به توان محاسباتی و ماهیت متناوب منابع تجدیدپذیر ایفا می کند. روندهای نوظهور در سیستمهای ذخیرهسازی انرژی و کاربردهای صنعتی بر روندهای نوظهور در سیستمهای ذخیرهسازی انرژی تمرکز دارد که برای انواع مختلف کاربردها از جمله تولید گرما و برق، حملونقل الکتریکی و هیبریدی قابل استفاده است.
با محدودیتهای عملکردی در دستگاههای ذخیرهسازی انرژی فعلی، مانند چگالی انرژی محدود، چگالی توان و عمر چرخه، چالشهای عمده در محیطهای پیچیده و پویا برنامههای ذخیرهسازی انرژی بررسی میشوند. در این مرجع اجزای با کارایی بالا، پیکربندی مناسب سیستم، مدلسازی و کنترل موثر، کلیدهای دستیابی به سیستمهای ذخیرهسازی انرژی یکپارچه و عملکردی هستند تا راهنمایی برای دستیابی به سیستمهای قابل اعتمادتر و کارآمدتر ارائه شود.
نتایج این کتاب به عنوان منبعی برای صنعت گران، دانشگاهیان و محققانی است که در حوزه فناوریهای ذخیرهسازی انرژی پیشرفته و کاربردهای آنها کار میکنند، و به آنها مروری بر گزینههای ذخیرهسازی انرژی میدهد. در دسترس بودن و روندهای فناوری که آنها را قادر می سازد تا تصمیمات بلندمدت و ایمن سیستم ذخیره سازی را اتخاذ کنند.
Energy storage plays an important role in supporting power-hungry devices and achieving stable power supply by optimally balancing supply and demand with ever-increasing requirement for computing power and the intermittent nature of renewable resources. Emerging Trends in Energy Storage Systems and Industrial Applications focuses on emerging trends in energy storage systems, applicable to various types of applications including heat and power generation, electrical and hybrid transportation.
With performance limitations in current energy storage devices, such as limited energy density, power density, and cycle life, major challenges in the complex and dynamic environments of energy storage applications are examined in this reference. High-performance components, proper system configuration, effective modelling and control are keys to achieving seamlessly integrated and functional energy storage systems are also addressed, in order to provide guidance to achieving more reliable and efficient systems.
Outcomes from this book serve as a resource for industrialists, academia and researchers working in the domain of advance energy storage technologies and their applications, giving them an overview of energy storage options, availability and technological trends enabling them to make longer-term, safe storage system decisions.
Front Cover Emerging Trends in Energy Storage Systems and Industrial Applications Copyright Page Contents List of contributors Preface 1 Artificial intelligence and machine learning applications in energy storage system: technology overview and perspectives Chapter Outline 1.1 Introduction 1.2 Classification of energy storage systems 1.2.1 Mechanical energy storage systems 1.2.2 Pumped hydro storage systems 1.2.3 Compressed air energy storage systems 1.2.4 Liquid air energy storage systems 1.2.5 Flywheel energy storage systems 1.2.6 Thermal energy storage systems 1.2.7 Electrostatic and magnetic energy storage systems 1.2.8 Chemical energy storage systems 1.2.9 Battery energy storage systems 1.3 Hybrid energy storage system 1.4 Artificial intelligence-based energy storage systems 1.5 Energy storage system control strategy 1.6 Machine learning-based energy storage system 1.7 Energy storage policies and standards 1.8 Barriers and potential solutions 1.9 Environmental impacts of energy storage systems 1.10 Conclusions References 2 Design of power electronic devices in the domain of energy storage Chapter Outline Nomenclature Index Highlights of the chapter 2.1 Introduction 2.2 Classification and importance of power electronic devices in energy storage 2.2.1 Classification of energy storage 2.2.2 Necessity of energy storage 2.2.3 Role of power electronic device in energy storage 2.3 Power electronic devices 2.3.1 History of semiconductor device development 2.3.2 Various power electronic devices 2.3.3 Specifications of power electronic device 2.3.4 Parameters associated with power electronic device 2.3.5 Various applications of power electronic device 2.4 Power electronic converter circuits 2.4.1 Basic converter topology 2.4.2 Converters in wind energy generations 2.4.3 Converters in solar power generation 2.4.4 Converters used in fuel cells 2.4.5 Power electronic converters in tidal power generation 2.5 Power conditioning system for energy storage 2.5.1 Battery management system using power electronic device 2.6 Conclusions References 3 Investigation of cushion gas/working gas ratios of underground salt caverns for hydrogen storage Chapter Outline Highlights Nomenclature Greek symbols Subscripts Index 3.1 Introduction 3.2 Materials and methods 3.3 Results and discussion 3.4 Conclusions References 4 Energy storage in capacitor banks Chapter Outline Highlights of the chapter Nomenclature Index 4.1 Introduction 4.2 Energy storage capacitor 4.2.1 Conventional capacitor 4.2.2 Electrochemical capacitors 4.2.2.1 Electrostatic double-layer capacitors 4.2.2.2 Pseudocapacitors 4.2.2.3 Hybrid supercapacitors 4.2.3 Comparison of supercapacitor and other storage devices 4.3 Capacitor model 4.3.1 Capacitor parameters 4.3.2 Shot life of capacitor 4.3.3 Test methods 4.3.4 Switch/triggering pulse generator 4.3.5 Transmission system 4.3.6 Power feed 4.4 Topology of capacitor bank circuit 4.4.1 Equivalent circuit of an energy storage capacitor bank 4.5 Charging and discharging operation 4.5.1 Constant voltage charging 4.5.2 Constant current charging 4.5.3 Constant power charging 4.5.4 Resonant charging 4.6 Application of capacitor bank storage system 4.6.1 Power quality improvement 4.6.2 Power factor improvement 4.6.3 voltage stabilizer 4.6.4 Hybrid electric vehicle 4.6.5 Uninterrupted power supply 4.6.6 Renewable energy application 4.6.7 Portable power supply 4.6.8 Adjustable speed drive 4.7 Conclusion References 5 Energy management systems for battery electric vehicles Chapter Outline Highlights Nomenclature 5.1 Introduction 5.2 Propulsion system in battery electric vehicles 5.2.1 Driving cycles 5.2.1.1 Comparison of speed values based on calculations and application usage 5.2.1.2 Change the speed value to 0m/s for the actual stop condition 5.2.1.3 Filling in blank data with linear regression 5.2.1.4 Changing data spikes with linear regression 5.2.2 Free body diagram of a vehicle 5.2.3 Key drivetrain components for battery electric vehicle 5.2.3.1 Electric motor 5.2.3.1.1 DC electric motor 5.2.3.1.2 AC electric motor 5.2.3.2 Batteries 5.2.4 Configurations for the propulsion system 5.3 Strategies for energy management systems in electric vehicle 5.3.1 Regenerative braking 5.3.2 Range extender 5.3.3 Charging system 5.4 Conclusion Acknowledgment References 6 Electrochemical energy storage part I: development, basic principle and conventional systems Chapter Outline Highlights Nomenclature 6.1 General introduction 6.2 History 6.3 Thermodynamics and basic principle 6.4 Batteries 6.4.1 Primary batteries 6.4.1.1 Liquid cathode batteries 6.4.1.1.1 Lithium/sulfur dioxide (Li/SO2) batteries 6.4.1.1.2 Lithium/thionyl chloride (Li/SOCl2) batteries 6.4.1.2 Solid-state electrolyte batteries 6.4.1.2.1 Lithium-iodine cells 6.4.1.3 Solid cathode batteries 6.4.1.3.1 Lithium manganese oxide (Li-MnO2) batteries 6.4.1.3.2 Lithium polycarbon fluoride cells 6.4.1.3.3 Lithium iron batteries 6.4.1.3.4 Zinc-manganese di-oxide batteries (Leclanche´, Zinc Chloride Cell, and alkaline batteries) 6.4.1.3.5 Zinc–mercuric oxide battery 6.4.1.3.6 Zinc-silver oxide battery 6.4.2 Secondary batteries 6.4.2.1 Lead-acid batteries 6.4.2.2 Nickel metal hydride (Ni-MH) batteries 6.4.2.3 Lithium-ion batteries 6.4.2.3.1 Insertion types cathodes 6.4.2.3.2 Lithium-ion batteries anode materials 6.4.2.4 Sodium-ion batteries 6.4.2.5 Potassium-ion batteries (KIBs) 6.4.2.6 Multivalent rechargeable batteries 6.5 Electrochemical capacitors 6.5.1 Electric double-layer capacitors 6.5.2 Pseudo-capacitors 6.6 Fuel cells 6.7 Conclusions Acknowledgments References 7 Thermal energy storage systems Chapter Outline Highlights Nomenclature 7.1 Introduction and the working principle 7.1.1 Sensible thermal storage systems 7.1.2 Latent thermal energy storage systems 7.1.2.1 Organic thermal storage materials 7.1.2.2 Inorganic latent thermal storage materials 7.1.2.3 Eutectic thermal storage materials 7.1.2.3.1 Determining the eutectic point using the phase diagram 7.1.2.3.2 Using the governing equations 7.1.3 Chemical reaction thermal (thermochemical) storage systems 7.2 Different employed technologies for thermal energy storage 7.3 Conclusion References 8 Hybrid energy storage devices: Li-ion and Na-ion capacitors Chapter Outline Highlights Novelty Nomenclatures 8.1 Introduction 8.2 Electrochemical energy storage devices 8.3 Electrochemical capacitors 8.3.1 Electric double-layer capacitors 8.3.2 Pseudocapacitors 8.4 Hybrid energy storage device: motivation 8.4.1 Hybrid lithium-ion capacitors 8.4.2 Electrode for lithium-ion capacitors 8.4.2.1 Cathode 8.4.2.1.1 Carbon-based materials 8.4.2.1.2 Activated carbon 8.4.2.1.3 Graphene 8.4.2.1.4 Carbon nanotube (CNT) 8.4.2.1.5 Other cathode materials used in lithium-ion capacitors 8.4.2.2 Anode 8.4.2.2.1 Carbon materials 8.4.2.2.2 Graphitized carbon 8.4.2.2.3 Non-graphitized carbon 8.4.2.2.4 Titanium-based materials 8.4.2.2.5 Advantages 8.4.2.2.6 Disadvantages 8.4.2.2.7 Pseudocapacitive materials for lithium-ion capacitor 8.4.2.2.8 Vanadium pentoxide (V2O5) 8.4.2.2.9 Niobium pentoxide (Nb2O5) 8.4.2.2.10 Manganese oxide (MnO) 8.4.2.2.11 Silicon (Si) based materials 8.5 Hybrid Na-ion capacitor 8.5.1 Electrochemical technique 8.5.2 Chemical reaction 8.5.3 Electrode materials for Na-ion capacitor 8.5.3.1 Anode materials for Na-ion capacitor 8.5.3.1.1 Hard carbon materials 8.5.3.1.2 Transition metal dichalcogenides composite-based materials 8.5.3.1.3 Ti/Nb-based compounds 8.5.3.2 Cathode materials for Na-ion capacitor 8.5.3.2.1 Carbon materials 8.5.3.2.2 MXenes 8.5.3.2.3 Na2Fe2(SO4)3 8.5.3.2.4 Na0.44MnO2 8.6 Challenges and future perspective References 9 Electrochemical energy storage systems Chapter Outline Nomenclature and abbreviation Highlight 9.1 Introduction to electrochemical energy storage 9.2 Electrochemical energy storage technologies 9.2.1 Supercapacitors 9.2.2 Batteries 9.3 Primary batteries 9.4 Supercapacitor 9.5 Lithium-ion batteries 9.5.1 Lithium-ion battery anode 9.5.2 Lithium-ion battery cathode 9.5.3 Lithium-ion battery electrolyte 9.6 Redox flow batteries 9.6.1 Redox flow battery cell chemistries 9.7 Emerging technologies 9.7.1 Sodium-ion batteries 9.7.2 Solid-state batteries 9.7.3 Multivalent cation systems 9.8 Outlook and conclusions Acknowledgments Reference 10 Energy harvesting and storage for stand-alone microsystems Chapter Outline 10.1 Introduction 10.2 Energy harvesting systems 10.2.1 Thermoelectric 10.2.2 Solar 10.2.3 Piezoelectric 10.2.4 Electronics and storage 10.3 Conclusions References 11 Techno-economic appraisal for large-scale energy storage systems Chapter Outline Highlights 11.1 Introduction 11.2 Energy storage technologies for smart grids 11.2.1 Benefits and costs associated with smart grids 11.2.2 Benefits of smart grids integrating large-scale energy storage 11.2.3 Energy storage options for smart grids 11.3 Techno-economic models for energy storage and power systems 11.4 Future techno-economic appraisals of energy storage for smart grids 11.4.1 Electrification of transport and electric vehicles 11.4.2 Heating and cooling of the built environment 11.4.3 Energy storage for nuclear power 11.5 Conclusions Acknowledgments References 12 Battery energy storage systems in microgrids Chapter Outline Highlights Nomenclature 12.1 Introduction 12.2 Dynamic model of an IACMG system with BESS and static and dynamic loads 12.3 Mode control of the BESS for load leveling application 12.4 Results and discussions 12.5 Conclusion Appendix References 13 Battery energy storage in micro-grids Chapter Outline Highlight Nomenclature 13.1 Introduction 13.1.1 Definitions of micro-grids 13.1.2 Battery energy storage systems technology 13.2 Optimal planning of battery energy storage systems considering battery degradation effects 13.2.1 Related works 13.2.2 Battery lifetime modeling 13.2.3 Taguchi’s orthogonal array testing-based uncertainty modeling 13.2.4 Problem formulation 13.2.4.1 Mathematic formulation 13.2.4.2 Upper layer model 13.2.4.3 Lower layer model 13.2.5 Solution approach 13.2.6 Simulation results 13.2.6.1 Parameter setting 13.2.6.2 Results analysis 13.2.7 Discussion 13.3 Risk-constrained two-stage coordinated operation of battery energy storage systems 13.3.1 Related works 13.3.2 Battery energy operational cost modeling 13.3.3 Problem formulation 13.3.3.1 First stage- day ahead dispatch model 13.3.3.2 Second stage-intra-day dispatch model 13.3.3.3 Risk management 13.3.4 Numerical results 13.3.4.1 Parameter setting 13.3.4.2 Results analysis 13.3.4.3 Risk analysis 13.3.5 Discussion 13.4 Conclusions Acknowledgement References 14 Harmonic distortion effect of large-scale hydropower storage based on doubly fed induction machine in power system Chapter Outline Nomenclature 14.1 Introduction 14.2 Principle and history of pumped storage power plant 14.2.1 Historical of variable speed-pumped storage power plant 14.2.2 Principle of variable speed-pumped storage power plant 14.2.3 Variable speed-pumped storage power plant types 14.2.3.1 Conventional variable speed-pumped storage power plant 14.2.3.2 State-of-the-art variable speed-pumped storage power plant 14.3 Modeling and control of variable speed-pumped storage power plant 14.3.1 Modeling of doubly fed induction machine-based pumped storage power plant 14.3.1.1 Hydraulic System 14.3.1.2 Doubly fed induction machine and machine side converter 14.3.1.3 Transformer side converter 14.3.2 Control of doubly fed induction machine-based pumped storage power plant 14.3.2.1 Turbine 14.3.2.2 Machine side converter 14.3.2.3 Transformer side converter 14.4 Simulation results 14.4.1 MATLAB/Simulink/Simpower 14.4.1.1 Case study 14.4.1.2 Simulation results 14.4.2 DIgSILENT power factory 14.4.2.1 Case study 14.4.2.2 Simulation results 14.5 Conclusion References 15 Advanced energy storage system in smart grids: power quality and reliability Chapter Outline Highlights Nomenclature 15.1 Introduction 15.2 A brief overview of basic energy storage system technologies 15.2.1 Electrochemical energy storage system technologies 15.2.1.1 Batteries 15.2.1.2 Hydrogen energy storage systems 15.2.2 Magnetic energy storage system technologies 15.2.3 Thermal energy storage system technologies 15.2.4 Mechanical energy storage system technologies 15.2.4.1 Pumped hydroenergy storage system 15.2.4.2 Compressed air energy storage system 15.2.4.3 Flywheels 15.2.5 Electrical energy storage system technologies 15.2.6 Energy storage technologies comparison 15.2.6.1 Energy rating 15.2.6.2 Power rating 15.2.6.3 Energy and power density 15.2.6.4 Response time 15.2.6.5 Lifetime 15.2.6.6 Capital and operating costs 15.3 Review of emerging advanced structure of energy storage system technologies in a smart grid environment 15.3.1 Hybrid energy storage systems 15.3.2 New emerging energy storage system schemes 15.4 Power quality and reliability indices 15.4.1 Power quality-based index 15.4.2 Reliability-based index 15.5 Impact of energy storage system technologies on smart grid power quality and reliability indices 15.5.1 Technical viewpoint in power quality 15.5.2 Technical viewpoint in reliability 15.5.3 Economic viewpoint 15.6 Conclusions and future trends References 16 The battery storage management and its control strategies for power system with photovoltaic generation Chapter Outline Highlights Nomenclature 16.1 Introduction 16.2 Characteristics analysis of power system with high penetration of photovoltaic generation 16.3 Classification of energy storage devices and their regulation ability 16.3.1 Physical energy storage 16.3.1.1 Pumped storage 16.3.1.2 Compressed air energy storage 16.3.1.3 Flywheel energy storage 16.3.2 Electrochemical energy storage 16.3.3 Electromagnetic energy storage 16.3.3.1 Superconducting magnetic energy storage 16.3.3.2 Supercapacitor 16.4 Battery storage management and its control strategies for power systems with large-scale photovoltaic generation 16.4.1 Grid-connected configuration of energy storage in photovoltaic/energy storage system 16.4.2 Capacity configuration of energy storage system 16.4.3 Control strategies of energy storage to frequency/voltage regulation of power system with photovoltaic generation 16.4.3.1 Grid-connected control strategy of power conversion system 16.4.3.2 Control strategy of energy storage for system frequency regulation 16.4.3.3 Control strategy of energy storage for system voltage regulation 16.4.4 Demonstration projects of energy storage system and photovoltaic generation 16.5 Current compensation of solar cell–supercapacitor devices series array to improve photovoltaic generation efficiency u... 16.5.1 Equivalent circuit of solar cell–supercapacitor devices unit and operating mode of its supercapacitor 16.5.1.1 Physical structure and equivalent circuit of solar cell–supercapacitor devices 16.5.1.2 Equivalent circuit of supercapacitor 16.5.2 Characteristics analysis of output power of solar cell–supercapacitor devices series array under partial shading 16.5.3 Current compensation method of solar cell–supercapacitor devices series array under partial shading 16.5.3.1 Discharge compensation of supercapacitor for solar cell–supercapacitor devices unit without or with shading shielding 16.5.3.2 Discharge compensation of supercapacitor for solar cell–supercapacitor devices unit with shadow shielding 16.5.3.3 Coordinated compensation of supercapacitors for solar cell–supercapacitor devices units 16.5.4 Current compensation implementation of solar cell–supercapacitor devices series array 16.5.5 Case study 16.5.5.1 Parameter setting 16.5.5.2 Analysis of simulation and laboratory test 16.6 Conclusions Acknowledge References 17 Solar power smoothing using battery energy storage system through fuzzy filtration technique Chapter Outline Nomenclature Highlights 17.1 Introduction 17.1.1 Applications of energy storage systems 17.1.1.1 Power smoothing 17.1.1.2 Peak shaving 17.1.1.3 Load leveling 17.1.1.4 Microgrid operation 17.1.1.5 Power quality 17.1.1.6 Black start 17.1.1.7 Energy arbitrage 17.1.1.8 Energy storage-based smoothing architectures 17.2 Related work 17.2.1 Filter-based smoothing topologies 17.2.2 Ramp rate control 17.3 Motivation behind using fuzzy logic control combined varying low pass filter for solar power smoothing 17.4 Proposed methodology 17.4.1 Varying low pass filter 17.4.2 Fuzzy logic controller design 17.4.2.1 Fuzzification 17.4.2.2 Fuzzy rules 17.4.2.3 Fuzzy inference system 17.4.2.4 Defuzzification 17.5 Simulation and discussion 17.5.1 Limitations of using low pass filter and moving average smoothing 17.5.2 Evaluation of the proposed smoothing controller against the conventional low pass filter smoothing considering norma... 17.5.3 Evaluation of the proposed smoothing controller against the conventional low pass filter smoothing considering inter... 17.6 Conclusion References 18 Multilevel converter-based STATCOM with hybrid storage system Chapter Outline Nomenclature 18.1 Introduction 18.2 Proposed configuration 18.3 System for study 18.4 Control of the topology 18.4.1 Active power support 18.4.2 Voltage regulation 18.4.3 Negative sequence current compensation 18.4.4 Ride through capability 18.5 Operation of hybrid storage system 18.5.1 Extraction of frequency components 18.5.2 Control of supercapacitor fed DC converter 18.5.3 Control of battery module fed DC converter 18.6 Discussion on simulation results 18.7 Conclusions Appendix References 19 Hybrid battery-supercapacitor energy storage for enhanced voltage stability in DC microgrids using autonomous control st... Chapter Outline Highlights Nomenclature 19.1 Introduction 19.1.1 Energy storage systems 19.1.2 Hybrid energy storage systems 19.2 Literature review 19.2.1 Types of integration topology for hybrid energy storage system 19.2.1.1 Passive topology of hybrid energy storage system 19.2.1.2 Semi-active topology of hybrid energy storage system 19.2.1.3 Fully active topology of hybrid energy storage system 19.2.2 Voltage regulation 19.3 Proposed control of hybrid energy storage system 19.3.1 Conventional low pass filter controller 19.3.2 Proposed controller strategy 19.4 Modeling of microgrid components 19.4.1 Battery energy storage system 19.4.2 Supercapacitor energy storage system 19.4.3 Solar photovoltaics generation system 19.4.4 Bi-directional converter 19.5 Results and discussion 19.5.1 Renewable power smoothing 19.5.1.1 Step decrease in generation 19.5.1.2 Step increase in generation 19.5.2 Load smoothing 19.5.2.1 Step decrease in load demand 19.5.2.2 Step increase in load demand 19.6 Conclusion References 20 Supervisory control strategy for a customized solar photovoltaic-based microgrid with a battery storage system: an exper... Chapter Outline Highlights Nomenclature 20.1 Introduction 20.2 The motivation behind the design of the proposed strategy 20.3 Architecture and working of the proposed supervisory control technique 20.3.1 The architecture of the system and control technique 20.3.2 Working on the proposed controller 20.4 Numerical analysis of the proposed rule-based control algorithm 20.4.1 Switching techniques 20.5 Simulation results 20.6 Experimental validation of the closed-loop microgrid system 20.6.1 Proposed controller 20.6.2 Battery storage 20.6.3 Residential loads 20.6.4 Solar photovoltaic-based system 20.6.5 Experimental setup 20.6.6 Experimental results of controller 20.7 Conclusion Acknowledgments References 21 Electrochemical energy storage part II: hybrid and future systems Chapter Outline Highlights Nomenclature 21.1 General introduction 21.2 Hybrid electrochemical systems 21.2.1 Metal-air batteries 21.2.2 Hybrid ultracapacitors 21.3 Future electrochemical energy storage 21.3.1 Multi-ion batteries 21.3.1.1 Mono-cation/mono-anion batteries 21.3.1.1.1 Dual cation 21.3.1.1.2 Triple-ion battery 21.3.1.2 Anion shuttle batteries 21.3.1.3 Sodium-seawater batteries 21.3.1.4 Solid-state and metal batteries 21.3.1.5 Lithium-sulfur batteries 21.3.1.6 Metal-ion-based aqueous energy storage systems 21.4 Conclusions Acknowledgments References 22 Electric vehicles: a step toward sustainability Chapter Outline Novelty Highlights 22.1 Introduction 22.2 Technologies for electric vehicles 22.3 Emerging electric motor technologies 22.4 Battery electric vehicles 22.5 Hybrid electric vehicles 22.5.1 Full hybrid electric vehicles 22.5.2 Mild hybrid electric vehicles 22.5.3 Micro hybrid electric vehicles 22.5.4 Plug-in hybrid electric vehicles 22.6 Nanotechnology for a hybrid electric vehicle 22.7 Hybrid energy storage system for e-vehicles 22.8 Simulation and experimental results of Hybrid energy storage system for light electric vehicle 22.9 Case studies on hybrid energy storage system 22.10 Opportunities 22.11 Summary and outlook References Appendix 1 Index Back Cover