ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Emerging Trends in Energy Storage Systems and Industrial Applications

دانلود کتاب روندهای نوظهور در سیستم های ذخیره سازی انرژی و کاربردهای صنعتی

Emerging Trends in Energy Storage Systems and Industrial Applications

مشخصات کتاب

Emerging Trends in Energy Storage Systems and Industrial Applications

دسته بندی: انرژی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0323905218, 9780323905213 
ناشر: Academic Press 
سال نشر: 2022 
تعداد صفحات: 700 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Emerging Trends in Energy Storage Systems and Industrial Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روندهای نوظهور در سیستم های ذخیره سازی انرژی و کاربردهای صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روندهای نوظهور در سیستم های ذخیره سازی انرژی و کاربردهای صنعتی



ذخیره انرژی نقش مهمی در پشتیبانی از دستگاه های تشنه انرژی و دستیابی به منبع تغذیه پایدار با متعادل کردن بهینه عرضه و تقاضا با نیاز روزافزون به توان محاسباتی و ماهیت متناوب منابع تجدیدپذیر ایفا می کند. روندهای نوظهور در سیستم‌های ذخیره‌سازی انرژی و کاربردهای صنعتی بر روندهای نوظهور در سیستم‌های ذخیره‌سازی انرژی تمرکز دارد که برای انواع مختلف کاربردها از جمله تولید گرما و برق، حمل‌ونقل الکتریکی و هیبریدی قابل استفاده است.

با محدودیت‌های عملکردی در دستگاه‌های ذخیره‌سازی انرژی فعلی، مانند چگالی انرژی محدود، چگالی توان و عمر چرخه، چالش‌های عمده در محیط‌های پیچیده و پویا برنامه‌های ذخیره‌سازی انرژی بررسی می‌شوند. در این مرجع اجزای با کارایی بالا، پیکربندی مناسب سیستم، مدل‌سازی و کنترل موثر، کلیدهای دستیابی به سیستم‌های ذخیره‌سازی انرژی یکپارچه و عملکردی هستند تا راهنمایی برای دستیابی به سیستم‌های قابل اعتمادتر و کارآمدتر ارائه شود.

نتایج این کتاب به عنوان منبعی برای صنعت گران، دانشگاهیان و محققانی است که در حوزه فناوری‌های ذخیره‌سازی انرژی پیشرفته و کاربردهای آن‌ها کار می‌کنند، و به آنها مروری بر گزینه‌های ذخیره‌سازی انرژی می‌دهد. در دسترس بودن و روندهای فناوری که آنها را قادر می سازد تا تصمیمات بلندمدت و ایمن سیستم ذخیره سازی را اتخاذ کنند.


توضیحاتی درمورد کتاب به خارجی

Energy storage plays an important role in supporting power-hungry devices and achieving stable power supply by optimally balancing supply and demand with ever-increasing requirement for computing power and the intermittent nature of renewable resources. Emerging Trends in Energy Storage Systems and Industrial Applications focuses on emerging trends in energy storage systems, applicable to various types of applications including heat and power generation, electrical and hybrid transportation.

With performance limitations in current energy storage devices, such as limited energy density, power density, and cycle life, major challenges in the complex and dynamic environments of energy storage applications are examined in this reference. High-performance components, proper system configuration, effective modelling and control are keys to achieving seamlessly integrated and functional energy storage systems are also addressed, in order to provide guidance to achieving more reliable and efficient systems.

Outcomes from this book serve as a resource for industrialists, academia and researchers working in the domain of advance energy storage technologies and their applications, giving them an overview of energy storage options, availability and technological trends enabling them to make longer-term, safe storage system decisions.



فهرست مطالب

Front Cover
Emerging Trends in Energy Storage Systems and Industrial Applications
Copyright Page
Contents
List of contributors
Preface
1 Artificial intelligence and machine learning applications in energy storage system: technology overview and perspectives
	Chapter Outline
	1.1 Introduction
	1.2 Classification of energy storage systems
		1.2.1 Mechanical energy storage systems
		1.2.2 Pumped hydro storage systems
		1.2.3 Compressed air energy storage systems
		1.2.4 Liquid air energy storage systems
		1.2.5 Flywheel energy storage systems
		1.2.6 Thermal energy storage systems
		1.2.7 Electrostatic and magnetic energy storage systems
		1.2.8 Chemical energy storage systems
		1.2.9 Battery energy storage systems
	1.3 Hybrid energy storage system
	1.4 Artificial intelligence-based energy storage systems
	1.5 Energy storage system control strategy
	1.6 Machine learning-based energy storage system
	1.7 Energy storage policies and standards
	1.8 Barriers and potential solutions
	1.9 Environmental impacts of energy storage systems
	1.10 Conclusions
	References
2 Design of power electronic devices in the domain of energy storage
	Chapter Outline
	Nomenclature
	Index
	Highlights of the chapter
	2.1 Introduction
	2.2 Classification and importance of power electronic devices in energy storage
		2.2.1 Classification of energy storage
		2.2.2 Necessity of energy storage
		2.2.3 Role of power electronic device in energy storage
	2.3 Power electronic devices
		2.3.1 History of semiconductor device development
		2.3.2 Various power electronic devices
		2.3.3 Specifications of power electronic device
		2.3.4 Parameters associated with power electronic device
		2.3.5 Various applications of power electronic device
	2.4 Power electronic converter circuits
		2.4.1 Basic converter topology
		2.4.2 Converters in wind energy generations
		2.4.3 Converters in solar power generation
		2.4.4 Converters used in fuel cells
		2.4.5 Power electronic converters in tidal power generation
	2.5 Power conditioning system for energy storage
		2.5.1 Battery management system using power electronic device
	2.6 Conclusions
	References
3 Investigation of cushion gas/working gas ratios of underground salt caverns for hydrogen storage
	Chapter Outline
	Highlights
	Nomenclature
	Greek symbols
	Subscripts
	Index
	3.1 Introduction
	3.2 Materials and methods
	3.3 Results and discussion
	3.4 Conclusions
	References
4 Energy storage in capacitor banks
	Chapter Outline
	Highlights of the chapter
	Nomenclature
	Index
	4.1 Introduction
	4.2 Energy storage capacitor
		4.2.1 Conventional capacitor
		4.2.2 Electrochemical capacitors
			4.2.2.1 Electrostatic double-layer capacitors
			4.2.2.2 Pseudocapacitors
			4.2.2.3 Hybrid supercapacitors
		4.2.3 Comparison of supercapacitor and other storage devices
	4.3 Capacitor model
		4.3.1 Capacitor parameters
		4.3.2 Shot life of capacitor
		4.3.3 Test methods
		4.3.4 Switch/triggering pulse generator
		4.3.5 Transmission system
		4.3.6 Power feed
	4.4 Topology of capacitor bank circuit
		4.4.1 Equivalent circuit of an energy storage capacitor bank
	4.5 Charging and discharging operation
		4.5.1 Constant voltage charging
		4.5.2 Constant current charging
		4.5.3 Constant power charging
		4.5.4 Resonant charging
	4.6 Application of capacitor bank storage system
		4.6.1 Power quality improvement
		4.6.2 Power factor improvement
		4.6.3 voltage stabilizer
		4.6.4 Hybrid electric vehicle
		4.6.5 Uninterrupted power supply
		4.6.6 Renewable energy application
		4.6.7 Portable power supply
		4.6.8 Adjustable speed drive
	4.7 Conclusion
	References
5 Energy management systems for battery electric vehicles
	Chapter Outline
	Highlights
	Nomenclature
	5.1 Introduction
	5.2 Propulsion system in battery electric vehicles
		5.2.1 Driving cycles
			5.2.1.1 Comparison of speed values based on calculations and application usage
			5.2.1.2 Change the speed value to 0m/s for the actual stop condition
			5.2.1.3 Filling in blank data with linear regression
			5.2.1.4 Changing data spikes with linear regression
		5.2.2 Free body diagram of a vehicle
		5.2.3 Key drivetrain components for battery electric vehicle
			5.2.3.1 Electric motor
				5.2.3.1.1 DC electric motor
				5.2.3.1.2 AC electric motor
			5.2.3.2 Batteries
		5.2.4 Configurations for the propulsion system
	5.3 Strategies for energy management systems in electric vehicle
		5.3.1 Regenerative braking
		5.3.2 Range extender
		5.3.3 Charging system
	5.4 Conclusion
	Acknowledgment
	References
6 Electrochemical energy storage part I: development, basic principle and conventional systems
	Chapter Outline
	Highlights
	Nomenclature
	6.1 General introduction
	6.2 History
	6.3 Thermodynamics and basic principle
	6.4 Batteries
		6.4.1 Primary batteries
			6.4.1.1 Liquid cathode batteries
				6.4.1.1.1 Lithium/sulfur dioxide (Li/SO2) batteries
				6.4.1.1.2 Lithium/thionyl chloride (Li/SOCl2) batteries
			6.4.1.2 Solid-state electrolyte batteries
				6.4.1.2.1 Lithium-iodine cells
			6.4.1.3 Solid cathode batteries
				6.4.1.3.1 Lithium manganese oxide (Li-MnO2) batteries
				6.4.1.3.2 Lithium polycarbon fluoride cells
				6.4.1.3.3 Lithium iron batteries
				6.4.1.3.4 Zinc-manganese di-oxide batteries (Leclanche´, Zinc Chloride Cell, and alkaline batteries)
				6.4.1.3.5 Zinc–mercuric oxide battery
				6.4.1.3.6 Zinc-silver oxide battery
		6.4.2 Secondary batteries
			6.4.2.1 Lead-acid batteries
			6.4.2.2 Nickel metal hydride (Ni-MH) batteries
			6.4.2.3 Lithium-ion batteries
				6.4.2.3.1 Insertion types cathodes
				6.4.2.3.2 Lithium-ion batteries anode materials
			6.4.2.4 Sodium-ion batteries
			6.4.2.5 Potassium-ion batteries (KIBs)
			6.4.2.6 Multivalent rechargeable batteries
	6.5 Electrochemical capacitors
		6.5.1 Electric double-layer capacitors
		6.5.2 Pseudo-capacitors
	6.6 Fuel cells
	6.7 Conclusions
	Acknowledgments
	References
7 Thermal energy storage systems
	Chapter Outline
	Highlights
	Nomenclature
	7.1 Introduction and the working principle
		7.1.1 Sensible thermal storage systems
		7.1.2 Latent thermal energy storage systems
			7.1.2.1 Organic thermal storage materials
			7.1.2.2 Inorganic latent thermal storage materials
			7.1.2.3 Eutectic thermal storage materials
				7.1.2.3.1 Determining the eutectic point using the phase diagram
				7.1.2.3.2 Using the governing equations
		7.1.3 Chemical reaction thermal (thermochemical) storage systems
	7.2 Different employed technologies for thermal energy storage
	7.3 Conclusion
	References
8 Hybrid energy storage devices: Li-ion and Na-ion capacitors
	Chapter Outline
	Highlights
	Novelty
	Nomenclatures
	8.1 Introduction
	8.2 Electrochemical energy storage devices
	8.3 Electrochemical capacitors
		8.3.1 Electric double-layer capacitors
		8.3.2 Pseudocapacitors
	8.4 Hybrid energy storage device: motivation
		8.4.1 Hybrid lithium-ion capacitors
		8.4.2 Electrode for lithium-ion capacitors
			8.4.2.1 Cathode
				8.4.2.1.1 Carbon-based materials
				8.4.2.1.2 Activated carbon
				8.4.2.1.3 Graphene
				8.4.2.1.4 Carbon nanotube (CNT)
				8.4.2.1.5 Other cathode materials used in lithium-ion capacitors
			8.4.2.2 Anode
				8.4.2.2.1 Carbon materials
				8.4.2.2.2 Graphitized carbon
				8.4.2.2.3 Non-graphitized carbon
				8.4.2.2.4 Titanium-based materials
				8.4.2.2.5 Advantages
				8.4.2.2.6 Disadvantages
				8.4.2.2.7 Pseudocapacitive materials for lithium-ion capacitor
				8.4.2.2.8 Vanadium pentoxide (V2O5)
				8.4.2.2.9 Niobium pentoxide (Nb2O5)
				8.4.2.2.10 Manganese oxide (MnO)
				8.4.2.2.11 Silicon (Si) based materials
	8.5 Hybrid Na-ion capacitor
		8.5.1 Electrochemical technique
		8.5.2 Chemical reaction
		8.5.3 Electrode materials for Na-ion capacitor
			8.5.3.1 Anode materials for Na-ion capacitor
				8.5.3.1.1 Hard carbon materials
				8.5.3.1.2 Transition metal dichalcogenides composite-based materials
				8.5.3.1.3 Ti/Nb-based compounds
			8.5.3.2 Cathode materials for Na-ion capacitor
				8.5.3.2.1 Carbon materials
				8.5.3.2.2 MXenes
				8.5.3.2.3 Na2Fe2(SO4)3
				8.5.3.2.4 Na0.44MnO2
	8.6 Challenges and future perspective
	References
9 Electrochemical energy storage systems
	Chapter Outline
	Nomenclature and abbreviation
	Highlight
	9.1 Introduction to electrochemical energy storage
	9.2 Electrochemical energy storage technologies
		9.2.1 Supercapacitors
		9.2.2 Batteries
	9.3 Primary batteries
	9.4 Supercapacitor
	9.5 Lithium-ion batteries
		9.5.1 Lithium-ion battery anode
		9.5.2 Lithium-ion battery cathode
		9.5.3 Lithium-ion battery electrolyte
	9.6 Redox flow batteries
		9.6.1 Redox flow battery cell chemistries
	9.7 Emerging technologies
		9.7.1 Sodium-ion batteries
		9.7.2 Solid-state batteries
		9.7.3 Multivalent cation systems
	9.8 Outlook and conclusions
	Acknowledgments
	Reference
10 Energy harvesting and storage for stand-alone microsystems
	Chapter Outline
	10.1 Introduction
	10.2 Energy harvesting systems
		10.2.1 Thermoelectric
		10.2.2 Solar
		10.2.3 Piezoelectric
		10.2.4 Electronics and storage
	10.3 Conclusions
	References
11 Techno-economic appraisal for large-scale energy storage systems
	Chapter Outline
	Highlights
	11.1 Introduction
	11.2 Energy storage technologies for smart grids
		11.2.1 Benefits and costs associated with smart grids
		11.2.2 Benefits of smart grids integrating large-scale energy storage
		11.2.3 Energy storage options for smart grids
	11.3 Techno-economic models for energy storage and power systems
	11.4 Future techno-economic appraisals of energy storage for smart grids
		11.4.1 Electrification of transport and electric vehicles
		11.4.2 Heating and cooling of the built environment
		11.4.3 Energy storage for nuclear power
	11.5 Conclusions
	Acknowledgments
	References
12 Battery energy storage systems in microgrids
	Chapter Outline
	Highlights
	Nomenclature
	12.1 Introduction
	12.2 Dynamic model of an IACMG system with BESS and static and dynamic loads
	12.3 Mode control of the BESS for load leveling application
	12.4 Results and discussions
	12.5 Conclusion
	Appendix
	References
13 Battery energy storage in micro-grids
	Chapter Outline
	Highlight
	Nomenclature
	13.1 Introduction
		13.1.1 Definitions of micro-grids
		13.1.2 Battery energy storage systems technology
	13.2 Optimal planning of battery energy storage systems considering battery degradation effects
		13.2.1 Related works
		13.2.2 Battery lifetime modeling
		13.2.3 Taguchi’s orthogonal array testing-based uncertainty modeling
	13.2.4 Problem formulation
		13.2.4.1 Mathematic formulation
		13.2.4.2 Upper layer model
		13.2.4.3 Lower layer model
	13.2.5 Solution approach
	13.2.6 Simulation results
		13.2.6.1 Parameter setting
		13.2.6.2 Results analysis
	13.2.7 Discussion
	13.3 Risk-constrained two-stage coordinated operation of battery energy storage systems
		13.3.1 Related works
		13.3.2 Battery energy operational cost modeling
		13.3.3 Problem formulation
			13.3.3.1 First stage- day ahead dispatch model
			13.3.3.2 Second stage-intra-day dispatch model
			13.3.3.3 Risk management
		13.3.4 Numerical results
			13.3.4.1 Parameter setting
			13.3.4.2 Results analysis
			13.3.4.3 Risk analysis
		13.3.5 Discussion
	13.4 Conclusions
	Acknowledgement
	References
14 Harmonic distortion effect of large-scale hydropower storage based on doubly fed induction machine in power system
	Chapter Outline
	Nomenclature
	14.1 Introduction
	14.2 Principle and history of pumped storage power plant
		14.2.1 Historical of variable speed-pumped storage power plant
		14.2.2 Principle of variable speed-pumped storage power plant
		14.2.3 Variable speed-pumped storage power plant types
			14.2.3.1 Conventional variable speed-pumped storage power plant
			14.2.3.2 State-of-the-art variable speed-pumped storage power plant
	14.3 Modeling and control of variable speed-pumped storage power plant
		14.3.1 Modeling of doubly fed induction machine-based pumped storage power plant
			14.3.1.1 Hydraulic System
			14.3.1.2 Doubly fed induction machine and machine side converter
			14.3.1.3 Transformer side converter
		14.3.2 Control of doubly fed induction machine-based pumped storage power plant
			14.3.2.1 Turbine
			14.3.2.2 Machine side converter
			14.3.2.3 Transformer side converter
	14.4 Simulation results
		14.4.1 MATLAB/Simulink/Simpower
			14.4.1.1 Case study
			14.4.1.2 Simulation results
		14.4.2 DIgSILENT power factory
			14.4.2.1 Case study
			14.4.2.2 Simulation results
	14.5 Conclusion
	References
15 Advanced energy storage system in smart grids: power quality and reliability
	Chapter Outline
	Highlights
	Nomenclature
	15.1 Introduction
	15.2 A brief overview of basic energy storage system technologies
		15.2.1 Electrochemical energy storage system technologies
			15.2.1.1 Batteries
			15.2.1.2 Hydrogen energy storage systems
		15.2.2 Magnetic energy storage system technologies
		15.2.3 Thermal energy storage system technologies
		15.2.4 Mechanical energy storage system technologies
			15.2.4.1 Pumped hydroenergy storage system
			15.2.4.2 Compressed air energy storage system
			15.2.4.3 Flywheels
		15.2.5 Electrical energy storage system technologies
		15.2.6 Energy storage technologies comparison
			15.2.6.1 Energy rating
			15.2.6.2 Power rating
			15.2.6.3 Energy and power density
			15.2.6.4 Response time
			15.2.6.5 Lifetime
			15.2.6.6 Capital and operating costs
	15.3 Review of emerging advanced structure of energy storage system technologies in a smart grid environment
		15.3.1 Hybrid energy storage systems
		15.3.2 New emerging energy storage system schemes
	15.4 Power quality and reliability indices
		15.4.1 Power quality-based index
		15.4.2 Reliability-based index
	15.5 Impact of energy storage system technologies on smart grid power quality and reliability indices
		15.5.1 Technical viewpoint in power quality
		15.5.2 Technical viewpoint in reliability
		15.5.3 Economic viewpoint
	15.6 Conclusions and future trends
	References
16 The battery storage management and its control strategies for power system with photovoltaic generation
	Chapter Outline
	Highlights
	Nomenclature
	16.1 Introduction
	16.2 Characteristics analysis of power system with high penetration of photovoltaic generation
	16.3 Classification of energy storage devices and their regulation ability
		16.3.1 Physical energy storage
			16.3.1.1 Pumped storage
			16.3.1.2 Compressed air energy storage
			16.3.1.3 Flywheel energy storage
		16.3.2 Electrochemical energy storage
		16.3.3 Electromagnetic energy storage
			16.3.3.1 Superconducting magnetic energy storage
			16.3.3.2 Supercapacitor
	16.4 Battery storage management and its control strategies for power systems with large-scale photovoltaic generation
		16.4.1 Grid-connected configuration of energy storage in photovoltaic/energy storage system
		16.4.2 Capacity configuration of energy storage system
		16.4.3 Control strategies of energy storage to frequency/voltage regulation of power system with photovoltaic generation
			16.4.3.1 Grid-connected control strategy of power conversion system
			16.4.3.2 Control strategy of energy storage for system frequency regulation
			16.4.3.3 Control strategy of energy storage for system voltage regulation
		16.4.4 Demonstration projects of energy storage system and photovoltaic generation
	16.5 Current compensation of solar cell–supercapacitor devices series array to improve photovoltaic generation efficiency u...
		16.5.1 Equivalent circuit of solar cell–supercapacitor devices unit and operating mode of its supercapacitor
			16.5.1.1 Physical structure and equivalent circuit of solar cell–supercapacitor devices
			16.5.1.2 Equivalent circuit of supercapacitor
		16.5.2 Characteristics analysis of output power of solar cell–supercapacitor devices series array under partial shading
		16.5.3 Current compensation method of solar cell–supercapacitor devices series array under partial shading
			16.5.3.1 Discharge compensation of supercapacitor for solar cell–supercapacitor devices unit without or with shading shielding
			16.5.3.2 Discharge compensation of supercapacitor for solar cell–supercapacitor devices unit with shadow shielding
			16.5.3.3 Coordinated compensation of supercapacitors for solar cell–supercapacitor devices units
		16.5.4 Current compensation implementation of solar cell–supercapacitor devices series array
		16.5.5 Case study
			16.5.5.1 Parameter setting
			16.5.5.2 Analysis of simulation and laboratory test
	16.6 Conclusions
	Acknowledge
	References
17 Solar power smoothing using battery energy storage system through fuzzy filtration technique
	Chapter Outline
	Nomenclature
	Highlights
	17.1 Introduction
		17.1.1 Applications of energy storage systems
			17.1.1.1 Power smoothing
			17.1.1.2 Peak shaving
			17.1.1.3 Load leveling
			17.1.1.4 Microgrid operation
			17.1.1.5 Power quality
			17.1.1.6 Black start
			17.1.1.7 Energy arbitrage
			17.1.1.8 Energy storage-based smoothing architectures
	17.2 Related work
		17.2.1 Filter-based smoothing topologies
		17.2.2 Ramp rate control
	17.3 Motivation behind using fuzzy logic control combined varying low pass filter for solar power smoothing
	17.4 Proposed methodology
		17.4.1 Varying low pass filter
		17.4.2 Fuzzy logic controller design
			17.4.2.1 Fuzzification
			17.4.2.2 Fuzzy rules
			17.4.2.3 Fuzzy inference system
			17.4.2.4 Defuzzification
	17.5 Simulation and discussion
		17.5.1 Limitations of using low pass filter and moving average smoothing
		17.5.2 Evaluation of the proposed smoothing controller against the conventional low pass filter smoothing considering norma...
		17.5.3 Evaluation of the proposed smoothing controller against the conventional low pass filter smoothing considering inter...
	17.6 Conclusion
	References
18 Multilevel converter-based STATCOM with hybrid storage system
	Chapter Outline
	Nomenclature
	18.1 Introduction
	18.2 Proposed configuration
	18.3 System for study
	18.4 Control of the topology
		18.4.1 Active power support
		18.4.2 Voltage regulation
		18.4.3 Negative sequence current compensation
		18.4.4 Ride through capability
	18.5 Operation of hybrid storage system
		18.5.1 Extraction of frequency components
		18.5.2 Control of supercapacitor fed DC converter
		18.5.3 Control of battery module fed DC converter
	18.6 Discussion on simulation results
	18.7 Conclusions
	Appendix
	References
19 Hybrid battery-supercapacitor energy storage for enhanced voltage stability in DC microgrids using autonomous control st...
	Chapter Outline
	Highlights
	Nomenclature
	19.1 Introduction
		19.1.1 Energy storage systems
		19.1.2 Hybrid energy storage systems
	19.2 Literature review
		19.2.1 Types of integration topology for hybrid energy storage system
			19.2.1.1 Passive topology of hybrid energy storage system
			19.2.1.2 Semi-active topology of hybrid energy storage system
			19.2.1.3 Fully active topology of hybrid energy storage system
		19.2.2 Voltage regulation
	19.3 Proposed control of hybrid energy storage system
		19.3.1 Conventional low pass filter controller
		19.3.2 Proposed controller strategy
	19.4 Modeling of microgrid components
		19.4.1 Battery energy storage system
		19.4.2 Supercapacitor energy storage system
		19.4.3 Solar photovoltaics generation system
		19.4.4 Bi-directional converter
	19.5 Results and discussion
		19.5.1 Renewable power smoothing
			19.5.1.1 Step decrease in generation
			19.5.1.2 Step increase in generation
		19.5.2 Load smoothing
			19.5.2.1 Step decrease in load demand
			19.5.2.2 Step increase in load demand
	19.6 Conclusion
	References
20 Supervisory control strategy for a customized solar photovoltaic-based microgrid with a battery storage system: an exper...
	Chapter Outline
	Highlights
	Nomenclature
	20.1 Introduction
	20.2 The motivation behind the design of the proposed strategy
	20.3 Architecture and working of the proposed supervisory control technique
		20.3.1 The architecture of the system and control technique
		20.3.2 Working on the proposed controller
	20.4 Numerical analysis of the proposed rule-based control algorithm
		20.4.1 Switching techniques
	20.5 Simulation results
	20.6 Experimental validation of the closed-loop microgrid system
		20.6.1 Proposed controller
		20.6.2 Battery storage
		20.6.3 Residential loads
		20.6.4 Solar photovoltaic-based system
		20.6.5 Experimental setup
		20.6.6 Experimental results of controller
	20.7 Conclusion
	Acknowledgments
	References
21 Electrochemical energy storage part II: hybrid and future systems
	Chapter Outline
	Highlights
	Nomenclature
	21.1 General introduction
	21.2 Hybrid electrochemical systems
		21.2.1 Metal-air batteries
		21.2.2 Hybrid ultracapacitors
	21.3 Future electrochemical energy storage
		21.3.1 Multi-ion batteries
			21.3.1.1 Mono-cation/mono-anion batteries
				21.3.1.1.1 Dual cation
				21.3.1.1.2 Triple-ion battery
			21.3.1.2 Anion shuttle batteries
			21.3.1.3 Sodium-seawater batteries
			21.3.1.4 Solid-state and metal batteries
			21.3.1.5 Lithium-sulfur batteries
			21.3.1.6 Metal-ion-based aqueous energy storage systems
	21.4 Conclusions
	Acknowledgments
	References
22 Electric vehicles: a step toward sustainability
	Chapter Outline
	Novelty
	Highlights
	22.1 Introduction
	22.2 Technologies for electric vehicles
	22.3 Emerging electric motor technologies
	22.4 Battery electric vehicles
	22.5 Hybrid electric vehicles
		22.5.1 Full hybrid electric vehicles
		22.5.2 Mild hybrid electric vehicles
		22.5.3 Micro hybrid electric vehicles
		22.5.4 Plug-in hybrid electric vehicles
	22.6 Nanotechnology for a hybrid electric vehicle
	22.7 Hybrid energy storage system for e-vehicles
	22.8 Simulation and experimental results of Hybrid energy storage system for light electric vehicle
	22.9 Case studies on hybrid energy storage system
	22.10 Opportunities
	22.11 Summary and outlook
	References
Appendix 1
Index
Back Cover




نظرات کاربران