ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Emerging Technologies in Environmental Bioremediation

دانلود کتاب فن آوری های نوظهور در زیست پالایی محیطی

Emerging Technologies in Environmental Bioremediation

مشخصات کتاب

Emerging Technologies in Environmental Bioremediation

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128198605, 9780128198605 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 487 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 36,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Emerging Technologies in Environmental Bioremediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های نوظهور در زیست پالایی محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فن آوری های نوظهور در زیست پالایی محیطی



تکنولوژی های نوظهور در پاکسازی زیست محیطی فناوری های نوظهور زیست پالایی را برای تصفیه و مدیریت پسماندهای صنعتی و سایر آلاینده های زیست محیطی به خاطر پایداری محیط زیست معرفی می کند. رویکردهای نوظهور زیست پالایی مانند فناوری نانو زیست پالایی، فناوری الکترو زیست پالایی، فناوری پیل سوختی میکروبی، فرآیند اصلاح‌شده لودزاک-اتینگر، فرآیند لجن فعال اصلاح‌شده، و فن‌آوری‌های گیاهی برای اصلاح ضایعات/آلاینده‌های صنعتی به شیوه‌ای جامع مورد بحث قرار گرفته‌اند. کتاب های دیگر علاوه بر این، این کتاب شامل اطلاعات به روز شده و همچنین دستورالعمل های آینده برای تحقیقات در زمینه زیست پالایی زباله های صنعتی است.

این کتاب برای دانشجویان، محققان، دانشمندان و متخصصان در زمینه میکروبیولوژی و بیوتکنولوژی، مهندسین زیست (شیمی)، محققان محیط زیست، سم شناسی زیست محیطی و بسیاری دیگر بسیار مفید خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging bioremediation approaches such as nano-bioremediation technology, electro-bioremediation technology, microbial fuel cell technology, Modified Ludzack-Ettinger Process, Modified Activated Sludge Process, and phytotechnologies for the remediation of industrial wastes/pollutants are discussed in a comprehensive manner not found in other books. Furthermore, the book includes updated information as well as future directions for research in the field of bioremediation of industrial wastes.

This book will be extremely useful to students, researchers, scientists and professionals in the field of microbiology and biotechnology, Bio (chemical) engineers, environmental researchers, eco-toxicology, and many more.



فهرست مطالب

Cover
Emerging Technologies in Environmental Bioremediation
Copyright
Contents
List of contributors
Preface
1 Immobilization of anaerobic ammonium oxidation bacteria for nitrogen-rich wastewater treatment
	1.1 Introduction
	1.2 Anammox bacteria and their metabolic process
	1.3 Cell immobilization: a strategy to improve microbial wastewater treatment
		1.3.1 What is cell immobilization?
		1.3.2 Different approaches for cell immobilization
			1.3.2.1 Granulation
			1.3.2.2 Biofilm formation
			1.3.2.3 Gel entrapment
	1.4 Why is gel immobilization advantageous?
	1.5 Gel materials used for the immobilization of anammox
		1.5.1 Polyvinyl alcohol and polyvinyl alcohol/sodium alginate
		1.5.2 Waterborne polyurethane
		1.5.3 Polyethylene glycol gel
	1.6 Application of cell immobilization in anammox and partial nitrification
		1.6.1 Application of immobilized anammox
	1.7 Commercialization of immobilizing technology
	1.8 Conclusion
	Acknowledgments
	References
2 Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome
	2.1 Introduction
	2.2 Petroleum refinery waste: composition and hazard
	2.3 Microbiology of hydrocarbon-associated environments
	2.4 Microbial bioremediation of waste sludge
		2.4.1 Accelerated bioremediation
			2.4.1.1 Biostimulation
			2.4.1.2 Bioaugmentation
	2.5 Factors affecting bioremediation
	2.6 Future scope
	References
	Further reading
3 Degradation and detoxification of waste via bioremediation: a step toward sustainable environment
	3.1 Introduction
	3.2 Bioremediation and the role of bioavailability
		3.2.1 Surfactants
		3.2.2 Biodegradation
		3.2.3 In situ and ex situ bioremediation
	3.3 The degradation and/or detoxification of pollutants
		3.3.1 Heavy metal pollutant
			3.3.1.1 Sources
			3.3.1.2 Bioremediation of heavy metals
			3.3.1.3 Adsorption
			3.3.1.4 Microorganisms for the detoxification of heavy metals
		3.3.2 Dyes
			3.3.2.1 Physical and chemical removal of dye effluent
			3.3.2.2 Biological treatment
	3.4 Role of genetic engineering in bioremediation
		3.4.1 Bioremediation through microbial systems biology
			3.4.1.1 Genomics
			3.4.1.2 Metagenomics
			3.4.1.3 Transcriptomics
			3.4.1.4 Proteomics and metaproteomics
	3.5 Limitations and future prospect
	Acknowledgment
	Competing interests
	References
	Further reading
4 Fungal laccases: versatile green catalyst for bioremediation of organopollutants
	4.1 Introduction
	4.2 Distribution and physiological functions of laccases
	4.3 Production of laccases
		4.3.1 Screening of laccase-producing fungi
		4.3.2 Cultural and nutritional conditions for laccase production
		4.3.3 Heterologous production of laccases
		4.3.4 Biochemical properties of laccases
			4.3.4.1 Kinetic properties of laccases
			4.3.4.2 Effect of pH and temperature on activity of laccases
			4.3.4.3 Effect of inhibitors on activity of laccases
		4.3.5 Mode of action of laccases
		4.3.6 Classification of laccases according to substrate specificity
		4.3.7 Laccase mediator system
		4.3.8 Immobilization of laccase
	4.4 Application of laccases for bioremediation of environmental pollutants
		4.4.1 Degradation of xenobiotic compounds
		4.4.2 Decolorization of synthetic dyes
		4.4.3 Treatment of industrial effluent
		4.4.4 Potential applications in pulp and paper industry
		4.4.5 Applications of laccases to develop ecofriendly processes
	4.5 Limitations and future prospects
	References
5 Emerging bioremediation technologies for the treatment of wastewater containing synthetic organic compounds
	5.1 Introduction
	5.2 Electrobioremediation
	5.3 Bioelectrochemical systems/technology
	5.4 Phytotechnology (phytoremediation)
		5.4.1 Phytoreactors and constructed wetlands
		5.4.2 Plant–microbe phytoremediation
		5.4.3 Plant enzymes and metabolites
		5.4.4 Hydroponic systems
		5.4.5 Plant tissue culturing
	5.5 Electron beam irradiation
	5.6 Conclusion: unresolved challenges and future perspectives
	Acknowledgments
	References
6 Bacterial quorum sensing in environmental biotechnology: a new approach for the detection and remediation of emerging pol...
	6.1 Introduction
	6.2 Mechanisms of bacterial quorum sensing
		6.2.1 Two-component system in Gram-positive bacteria
		6.2.2 Acyl homoserine lactone in Gram-negative bacteria
	6.3 Quorum sensing in environmental biotechnology
		6.3.1 Heavy metal detection
		6.3.2 Pathogen detection
		6.3.3 Bioremediation
		6.3.4 Biofilm formation
		6.3.5 Hydrocarbon remediation
	6.4 Limitations of microbial quorum sensing
	6.5 Conclusion
	References
7 Bioremediation: an effective technology toward a sustainable environment via the remediation of emerging environmental po...
	7.1 Introduction
	7.2 Emerging pollutants
		7.2.1 Bisphenol A
			7.2.1.1 Inorganic–organic clays
			7.2.1.2 Photodegradation
		7.2.2 Polycyclic aromatic hydrocarbons
			7.2.2.1 Bacterial catabolism of polycyclic aromatic hydrocarbons
			7.2.2.2 Halophilic/halotolerant bacteria and archaea for the degradation of polycyclic aromatic hydrocarbons
			7.2.2.3 Fungal degradation
			7.2.2.4 Chemical oxidation and photodegradation
		7.2.3 Polychlorinated biphenyls
			7.2.3.1 Biological degradation
			7.2.3.2 Halogenated organic compounds technology for polychlorinated biphenyls degradation
		7.2.4 Pharmaceutical wastes
			7.2.4.1 Photodegradation
			7.2.4.2 Sludge treatment
		7.2.5 Hospital effluents as source of emerging pollutants
			7.2.5.1 Biological treatment
		7.2.6 Other emerging pollutants
	7.3 Types of bioremediation
		7.3.1 Microbial bioremediation
			7.3.1.1 Bacterial bioremediation
			7.3.1.2 Mycoremediation
		7.3.2 Phycoremediation
		7.3.3 Mixed cell culture system
		7.3.4 Phytoremediation
			7.3.4.1 Phytoextraction
			7.3.4.2 Rhizofiltration
			7.3.4.3 Phytostabilization
			7.3.4.4 Phytodegradation
			7.3.4.5 Phytovolatilization
			7.3.4.6 Rhizoremediation
		7.3.5 Enzymatic bioremediation
		7.3.6 Zooremediation
		7.3.7 Vermiremediation
	7.4 Emerging techniques
		7.4.1 Application of biosurfactants
		7.4.2 Immobilization techniques
		7.4.3 Adsorption and electrostatic binding
		7.4.4 Entrapment in porous matrix and encapsulation
		7.4.5 Electrokinetic remediation
		7.4.6 Metagenomics
		7.4.7 Protein engineering
		7.4.8 Bioinformatics
		7.4.9 Nanotechnology
		7.4.10 Genetic engineering
		7.4.11 Designer microbe and plant approach
		7.4.12 Rhizosphere engineering
		7.4.13 Manipulation of plant–microbe symbiosis
		7.4.14 Cometabolic bioremediation
	7.5 Conclusion
	Acknowledgment
	Competing interests
	References
8 Application of metagenomics in remediation of contaminated sites and environmental restoration
	8.1 Introduction
	8.2 Mechanism of bioremediation
	8.3 Approaches used to study microbial communities involved in in situ and ex situ bioremediation
		8.3.1 Culture-based techniques
		8.3.2 Culture-independent techniques
			8.3.2.1 Polymerase chain reaction–based molecular techniques
				8.3.2.1.1 Denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis
				8.3.2.1.2 Single-strand conformation polymorphism
				8.3.2.1.3 Restriction fragment length polymorphism/amplified ribosomal DNA restriction analysis
				8.3.2.1.4 Terminal restriction fragment length polymorphisms
				8.3.2.1.5 Automated ribosomal intergenic spacer analysis
				8.3.2.1.6 Random amplified polymorphic DNA
				8.3.2.1.7 Stable-isotope probing
				8.3.2.1.8 Quantitative polymerase chain reaction
			8.3.2.2 Nonpolymerase chain reaction–based molecular techniques
				8.3.2.2.1 Fluorescence in situ hybridization
				8.3.2.2.2 Guanine plus cytosine content
				8.3.2.2.3 Microarrays
	8.4 Metagenomics: a culture-independent insight
		8.4.1 Functional-based metagenomics
		8.4.2 Sequence-based metagenomics
		8.4.3 Metatranscriptomics
		8.4.4 Metaproteomics
		8.4.5 Metabolomics
		8.4.6 Metagenomics sequencing strategies
	8.5 Next-generation sequencing technologies to explore structure and function of microbial communities
	8.6 Conclusion
	References
	Further reading
9 In situ bioremediation techniques for the removal of emerging contaminants and heavy metals using hybrid microbial electr...
	9.1 Introduction
		9.1.1 Bioremediation for pollution control and classification of bioremediation techniques
		9.1.2 Microbial electrochemical technology
	9.2 In situ bioremediation using microbial electrochemical technologies
		9.2.1 Constructed wetlands-microbial fuel cells
		9.2.2 Sediment-microbial fuel cells
		9.2.3 Soil-microbial fuel cells
		9.2.4 Plant-microbial fuel cells
	9.3 Future scope of research
	9.4 Summary
	References
10 Gene-targeted metagenomics approach for the degradation of organic pollutants
	10.1 Introduction
	10.2 Gene-targeted metagenomics
	10.3 Methods used for metagenomics studies
	10.4 Bacterial community abundance
		10.4.1 Biodegradation pathway involved in the degradation of organic compounds
			10.4.1.1 Aerobic pathway
			10.4.1.2 Anaerobic pathways
		10.4.2 Functional metagenomics
	10.5 Conclusion
	10.6 Future perspective
	References
	Further reading
11 Current status of toxic wastewater control strategies
	11.1 Introduction
	11.2 Causes and effects of toxic wastewater pollution
	11.3 Current interventions in toxic wastewater control
		11.3.1 Treatment using aquatic systems
		11.3.2 Treatment using microalgae
		11.3.3 Treatment using vermifiltration
		11.3.4 Other interventions in toxic wastewater control
	11.4 Wastewater reuse
	11.5 Conclusion
	Acknowledgments
	References
12 Latest innovations in bacterial degradation of textile azo dyes
	12.1 Introduction
	12.2 Bacteria in degradation of azo dyes
		12.2.1 Bacteria as source
		12.2.2 Mechanism of azo dye degradation by bacteria
		12.2.3 Phases of treatment
		12.2.4 Recent studies in bacterial mediated azo dye degradation
		12.2.5 Analytical methods in azo dye degradation
		12.2.6 Analysis of efficiency of bacterial dye degradation by toxicity tests
	12.3 Computational inputs in enhancing biodegradation
		12.3.1 Choice of strains: adapted versus nonadapted strains
		12.3.2 In silico analysis as a valuable tool
	12.4 Alternative front-runners: fungi, yeast, and algae-mediated azo dye degradation
	12.5 Future perspective
	References
13 Development in wastewater treatment plant design
	13.1 Introduction
		13.1.1 Conventional wastewater treatment technology
			13.1.1.1 Primary treatment
				13.1.1.1.1 Screens
				13.1.1.1.2 Grit chambers
				13.1.1.1.3 Primary settlers or sedimentation
			13.1.1.2 Secondary treatment
				13.1.1.2.1 Aerobic treatment system
				13.1.1.2.2 Anaerobic treatment
			13.1.1.3 Tertiary treatment
		13.1.2 Recent advances achieved in wastewater treatment plant
			13.1.2.1 Primary treatment
			13.1.2.2 Secondary treatment
				13.1.2.2.1 Aerobic secondary treatment
				13.1.2.2.2 Anaerobic secondary treatment
	13.2 Tertiary treatment
	13.3 Conclusion
	References
14 Engineering biomaterials for the bioremediation: advances in nanotechnological approaches for heavy metals removal from ...
	14.1 Introduction
	14.2 Bioremediation
	14.3 Nanotechnology and bioremediation
		14.3.1 Nanomaterials used for removing pollutants
			14.3.1.1 Carbon-based nanomaterials
			14.3.1.2 Hydroxyapatite nanomaterials
			14.3.1.3 Metallic nanoparticles
			14.3.1.4 Biogenic uraninite nanoparticles
			14.3.1.5 Dendrimers
			14.3.1.6 Polymeric nanocomposites
			14.3.1.7 Nanozymes
			14.3.1.8 Microorganisms
		14.3.2 Bioremediation of soil
			14.3.2.1 Phytoremediation
			14.3.2.2 Microbial bioremediation
			14.3.2.3 Nanomaterials based bioremediation
	14.4 Conclusion
	Acknowledgement
	References
15 Algal–bacterial symbiosis and its application in wastewater treatment
	15.1 Introduction
	15.2 The symbiotic process
		15.2.1 Exchange of information in the form of bioactive compounds for symbiosis
			15.2.1.1 Quorum sensing
		15.2.2 Exudates that can inhibit the microbes in the vicinity
		15.2.3 Exudates that can stimulate the microbes in the vicinity
			15.2.3.1 Cofactor auxotrophy
		15.2.4 Factors affecting symbiotic systems
			15.2.4.1 Dissolved oxygen
			15.2.4.2 Carbon dioxide
			15.2.4.3 Light
			15.2.4.4 Hydraulic retention time
			15.2.4.5 Initial algae:bacteria ratio
			15.2.4.6 Substrate concentrations
			15.2.4.7 pH and temperature
	15.3 Applications in wastewater treatment
		15.3.1 Types of reactors
		15.3.2 Nutrients removal
		15.3.3 Metal removal
		15.3.4 Organic matter removal
		15.3.5 Emerging contaminants removal
		15.3.6 Removal of refractory compounds
	15.4 Energy generation
		15.4.1 Algal biohydrogen production
		15.4.2 Algal lipid production
		15.4.3 Microbial fuel cell reactor using algal–bacteria interaction
	15.5 Conclusion and future directions
	References
16 Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L.
	16.1 Introduction
	16.2 Different genera of plant growth–promoting rhizobacteria
	16.3 Plant growth–promoting rhizobacteria role in heavy metals dynamics in the soil
	16.4 Plant growth–promoting rhizobacteria’s role in controlling pathogens in rice
	16.5 Plant growth–promoting rhizobacteria in remediation of the environment
	16.6 Conclusion and future prospect
	References
	Further reading
17 Study of transport models for arsenic removal using nanofiltration process: recent perspectives
	17.1 Introduction
		17.1.1 Sources
			17.1.1.1 Anthropogenic sources
			17.1.1.2 Natural sources
		17.1.2 Health effects
		17.1.3 Permissible limit
	17.2 Chemistry of arsenic
	17.3 Methods of arsenic removal from water/wastewater
		17.3.1 Membrane technology
	17.4 Nanofiltration of arsenic
		17.4.1 Modeling of nanofiltration membranes for arsenic removal
	17.5 Conclusion and future perspective
	Nomenclature
	Greek symbols
	Abbreviations
	References
	Further Reading
18 Bioremediation and biorecovery of aqueous lead by local lead-resistant organisms
	18.1 Introduction
	18.2 Remediation of Pb
		18.2.1 Conventional methods for Pb remediation or recovery
		18.2.2 Bioremediation of Pb
		18.2.3 Mechanisms of bioremediation
	18.3 Case study of aqueous Pb biorecovery by local Pb-resistant organisms
		18.3.1 Characterization of bacterial consortia
		18.3.2 Precipitate identification
		18.3.3 Microbiological and kinetic study
			18.3.3.1 Laboratory-scale system design and experimental approach
			18.3.3.2 Laboratory-scale system results and discussion
		18.3.4 Case studies of varied operating conditions
			18.3.4.1 Effect of elevated heavy metal concentrations
			18.3.4.2 Effect of Zn(II) or Cu(II) ions on Pb(II) bioprecipitation
			18.3.4.3 The minimum inhibitory concentration of Pb(II) for the B-consortium
			18.3.4.4 Effect of substrate composition
	18.4 Conclusion and outlook
	Acknowledgment
	References
19 Microbial bioremediation of azo dye through microbiological approach
	19.1 Introduction
	19.2 Classification of dyes
	19.3 Role of environmental parameters on microbial biodegradation and bioremediation of azo dye
	19.4 Effects of environmental parameters on azo dye degradation
		19.4.1 Temperature
		19.4.2 Oxygen
		19.4.3 Dye concentration
		19.4.4 Electron donor
		19.4.5 pH
		19.4.6 Dye structure
		19.4.7 Redox potential
		19.4.8 Redox mediator
		19.4.9 Decolorization by genetically modified organisms
	19.5 Conclusion
	References
	Further reading
20 Novel process of ellagic acid synthesis from waste generated from mango pulp processing industries
	20.1 Introduction
		20.1.1 Waste from mango pulp processing industries
	20.2 Composition of mango wastes
	20.3 Types of tannins
	20.4 Bioconversion of tannin to ellagic acid
	20.5 Microbes involved in the production of ellagic acid
	20.6 Applications of ellagic acid
	20.7 Conclusion
	References
	Further reading
Index
Back Cover




نظرات کاربران