دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Maulin P. Shah (editor), Susana Rodriguez-Couto (editor), S. Sevinc Sengor (editor) سری: ISBN (شابک) : 0128198605, 9780128198605 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 487 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Emerging Technologies in Environmental Bioremediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های نوظهور در زیست پالایی محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژی های نوظهور در پاکسازی زیست محیطی فناوری های نوظهور زیست پالایی را برای تصفیه و مدیریت پسماندهای صنعتی و سایر آلاینده های زیست محیطی به خاطر پایداری محیط زیست معرفی می کند. رویکردهای نوظهور زیست پالایی مانند فناوری نانو زیست پالایی، فناوری الکترو زیست پالایی، فناوری پیل سوختی میکروبی، فرآیند اصلاحشده لودزاک-اتینگر، فرآیند لجن فعال اصلاحشده، و فنآوریهای گیاهی برای اصلاح ضایعات/آلایندههای صنعتی به شیوهای جامع مورد بحث قرار گرفتهاند. کتاب های دیگر علاوه بر این، این کتاب شامل اطلاعات به روز شده و همچنین دستورالعمل های آینده برای تحقیقات در زمینه زیست پالایی زباله های صنعتی است.
این کتاب برای دانشجویان، محققان، دانشمندان و متخصصان در زمینه میکروبیولوژی و بیوتکنولوژی، مهندسین زیست (شیمی)، محققان محیط زیست، سم شناسی زیست محیطی و بسیاری دیگر بسیار مفید خواهد بود.
Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging bioremediation approaches such as nano-bioremediation technology, electro-bioremediation technology, microbial fuel cell technology, Modified Ludzack-Ettinger Process, Modified Activated Sludge Process, and phytotechnologies for the remediation of industrial wastes/pollutants are discussed in a comprehensive manner not found in other books. Furthermore, the book includes updated information as well as future directions for research in the field of bioremediation of industrial wastes.
This book will be extremely useful to students, researchers, scientists and professionals in the field of microbiology and biotechnology, Bio (chemical) engineers, environmental researchers, eco-toxicology, and many more.
Cover Emerging Technologies in Environmental Bioremediation Copyright Contents List of contributors Preface 1 Immobilization of anaerobic ammonium oxidation bacteria for nitrogen-rich wastewater treatment 1.1 Introduction 1.2 Anammox bacteria and their metabolic process 1.3 Cell immobilization: a strategy to improve microbial wastewater treatment 1.3.1 What is cell immobilization? 1.3.2 Different approaches for cell immobilization 1.3.2.1 Granulation 1.3.2.2 Biofilm formation 1.3.2.3 Gel entrapment 1.4 Why is gel immobilization advantageous? 1.5 Gel materials used for the immobilization of anammox 1.5.1 Polyvinyl alcohol and polyvinyl alcohol/sodium alginate 1.5.2 Waterborne polyurethane 1.5.3 Polyethylene glycol gel 1.6 Application of cell immobilization in anammox and partial nitrification 1.6.1 Application of immobilized anammox 1.7 Commercialization of immobilizing technology 1.8 Conclusion Acknowledgments References 2 Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome 2.1 Introduction 2.2 Petroleum refinery waste: composition and hazard 2.3 Microbiology of hydrocarbon-associated environments 2.4 Microbial bioremediation of waste sludge 2.4.1 Accelerated bioremediation 2.4.1.1 Biostimulation 2.4.1.2 Bioaugmentation 2.5 Factors affecting bioremediation 2.6 Future scope References Further reading 3 Degradation and detoxification of waste via bioremediation: a step toward sustainable environment 3.1 Introduction 3.2 Bioremediation and the role of bioavailability 3.2.1 Surfactants 3.2.2 Biodegradation 3.2.3 In situ and ex situ bioremediation 3.3 The degradation and/or detoxification of pollutants 3.3.1 Heavy metal pollutant 3.3.1.1 Sources 3.3.1.2 Bioremediation of heavy metals 3.3.1.3 Adsorption 3.3.1.4 Microorganisms for the detoxification of heavy metals 3.3.2 Dyes 3.3.2.1 Physical and chemical removal of dye effluent 3.3.2.2 Biological treatment 3.4 Role of genetic engineering in bioremediation 3.4.1 Bioremediation through microbial systems biology 3.4.1.1 Genomics 3.4.1.2 Metagenomics 3.4.1.3 Transcriptomics 3.4.1.4 Proteomics and metaproteomics 3.5 Limitations and future prospect Acknowledgment Competing interests References Further reading 4 Fungal laccases: versatile green catalyst for bioremediation of organopollutants 4.1 Introduction 4.2 Distribution and physiological functions of laccases 4.3 Production of laccases 4.3.1 Screening of laccase-producing fungi 4.3.2 Cultural and nutritional conditions for laccase production 4.3.3 Heterologous production of laccases 4.3.4 Biochemical properties of laccases 4.3.4.1 Kinetic properties of laccases 4.3.4.2 Effect of pH and temperature on activity of laccases 4.3.4.3 Effect of inhibitors on activity of laccases 4.3.5 Mode of action of laccases 4.3.6 Classification of laccases according to substrate specificity 4.3.7 Laccase mediator system 4.3.8 Immobilization of laccase 4.4 Application of laccases for bioremediation of environmental pollutants 4.4.1 Degradation of xenobiotic compounds 4.4.2 Decolorization of synthetic dyes 4.4.3 Treatment of industrial effluent 4.4.4 Potential applications in pulp and paper industry 4.4.5 Applications of laccases to develop ecofriendly processes 4.5 Limitations and future prospects References 5 Emerging bioremediation technologies for the treatment of wastewater containing synthetic organic compounds 5.1 Introduction 5.2 Electrobioremediation 5.3 Bioelectrochemical systems/technology 5.4 Phytotechnology (phytoremediation) 5.4.1 Phytoreactors and constructed wetlands 5.4.2 Plant–microbe phytoremediation 5.4.3 Plant enzymes and metabolites 5.4.4 Hydroponic systems 5.4.5 Plant tissue culturing 5.5 Electron beam irradiation 5.6 Conclusion: unresolved challenges and future perspectives Acknowledgments References 6 Bacterial quorum sensing in environmental biotechnology: a new approach for the detection and remediation of emerging pol... 6.1 Introduction 6.2 Mechanisms of bacterial quorum sensing 6.2.1 Two-component system in Gram-positive bacteria 6.2.2 Acyl homoserine lactone in Gram-negative bacteria 6.3 Quorum sensing in environmental biotechnology 6.3.1 Heavy metal detection 6.3.2 Pathogen detection 6.3.3 Bioremediation 6.3.4 Biofilm formation 6.3.5 Hydrocarbon remediation 6.4 Limitations of microbial quorum sensing 6.5 Conclusion References 7 Bioremediation: an effective technology toward a sustainable environment via the remediation of emerging environmental po... 7.1 Introduction 7.2 Emerging pollutants 7.2.1 Bisphenol A 7.2.1.1 Inorganic–organic clays 7.2.1.2 Photodegradation 7.2.2 Polycyclic aromatic hydrocarbons 7.2.2.1 Bacterial catabolism of polycyclic aromatic hydrocarbons 7.2.2.2 Halophilic/halotolerant bacteria and archaea for the degradation of polycyclic aromatic hydrocarbons 7.2.2.3 Fungal degradation 7.2.2.4 Chemical oxidation and photodegradation 7.2.3 Polychlorinated biphenyls 7.2.3.1 Biological degradation 7.2.3.2 Halogenated organic compounds technology for polychlorinated biphenyls degradation 7.2.4 Pharmaceutical wastes 7.2.4.1 Photodegradation 7.2.4.2 Sludge treatment 7.2.5 Hospital effluents as source of emerging pollutants 7.2.5.1 Biological treatment 7.2.6 Other emerging pollutants 7.3 Types of bioremediation 7.3.1 Microbial bioremediation 7.3.1.1 Bacterial bioremediation 7.3.1.2 Mycoremediation 7.3.2 Phycoremediation 7.3.3 Mixed cell culture system 7.3.4 Phytoremediation 7.3.4.1 Phytoextraction 7.3.4.2 Rhizofiltration 7.3.4.3 Phytostabilization 7.3.4.4 Phytodegradation 7.3.4.5 Phytovolatilization 7.3.4.6 Rhizoremediation 7.3.5 Enzymatic bioremediation 7.3.6 Zooremediation 7.3.7 Vermiremediation 7.4 Emerging techniques 7.4.1 Application of biosurfactants 7.4.2 Immobilization techniques 7.4.3 Adsorption and electrostatic binding 7.4.4 Entrapment in porous matrix and encapsulation 7.4.5 Electrokinetic remediation 7.4.6 Metagenomics 7.4.7 Protein engineering 7.4.8 Bioinformatics 7.4.9 Nanotechnology 7.4.10 Genetic engineering 7.4.11 Designer microbe and plant approach 7.4.12 Rhizosphere engineering 7.4.13 Manipulation of plant–microbe symbiosis 7.4.14 Cometabolic bioremediation 7.5 Conclusion Acknowledgment Competing interests References 8 Application of metagenomics in remediation of contaminated sites and environmental restoration 8.1 Introduction 8.2 Mechanism of bioremediation 8.3 Approaches used to study microbial communities involved in in situ and ex situ bioremediation 8.3.1 Culture-based techniques 8.3.2 Culture-independent techniques 8.3.2.1 Polymerase chain reaction–based molecular techniques 8.3.2.1.1 Denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis 8.3.2.1.2 Single-strand conformation polymorphism 8.3.2.1.3 Restriction fragment length polymorphism/amplified ribosomal DNA restriction analysis 8.3.2.1.4 Terminal restriction fragment length polymorphisms 8.3.2.1.5 Automated ribosomal intergenic spacer analysis 8.3.2.1.6 Random amplified polymorphic DNA 8.3.2.1.7 Stable-isotope probing 8.3.2.1.8 Quantitative polymerase chain reaction 8.3.2.2 Nonpolymerase chain reaction–based molecular techniques 8.3.2.2.1 Fluorescence in situ hybridization 8.3.2.2.2 Guanine plus cytosine content 8.3.2.2.3 Microarrays 8.4 Metagenomics: a culture-independent insight 8.4.1 Functional-based metagenomics 8.4.2 Sequence-based metagenomics 8.4.3 Metatranscriptomics 8.4.4 Metaproteomics 8.4.5 Metabolomics 8.4.6 Metagenomics sequencing strategies 8.5 Next-generation sequencing technologies to explore structure and function of microbial communities 8.6 Conclusion References Further reading 9 In situ bioremediation techniques for the removal of emerging contaminants and heavy metals using hybrid microbial electr... 9.1 Introduction 9.1.1 Bioremediation for pollution control and classification of bioremediation techniques 9.1.2 Microbial electrochemical technology 9.2 In situ bioremediation using microbial electrochemical technologies 9.2.1 Constructed wetlands-microbial fuel cells 9.2.2 Sediment-microbial fuel cells 9.2.3 Soil-microbial fuel cells 9.2.4 Plant-microbial fuel cells 9.3 Future scope of research 9.4 Summary References 10 Gene-targeted metagenomics approach for the degradation of organic pollutants 10.1 Introduction 10.2 Gene-targeted metagenomics 10.3 Methods used for metagenomics studies 10.4 Bacterial community abundance 10.4.1 Biodegradation pathway involved in the degradation of organic compounds 10.4.1.1 Aerobic pathway 10.4.1.2 Anaerobic pathways 10.4.2 Functional metagenomics 10.5 Conclusion 10.6 Future perspective References Further reading 11 Current status of toxic wastewater control strategies 11.1 Introduction 11.2 Causes and effects of toxic wastewater pollution 11.3 Current interventions in toxic wastewater control 11.3.1 Treatment using aquatic systems 11.3.2 Treatment using microalgae 11.3.3 Treatment using vermifiltration 11.3.4 Other interventions in toxic wastewater control 11.4 Wastewater reuse 11.5 Conclusion Acknowledgments References 12 Latest innovations in bacterial degradation of textile azo dyes 12.1 Introduction 12.2 Bacteria in degradation of azo dyes 12.2.1 Bacteria as source 12.2.2 Mechanism of azo dye degradation by bacteria 12.2.3 Phases of treatment 12.2.4 Recent studies in bacterial mediated azo dye degradation 12.2.5 Analytical methods in azo dye degradation 12.2.6 Analysis of efficiency of bacterial dye degradation by toxicity tests 12.3 Computational inputs in enhancing biodegradation 12.3.1 Choice of strains: adapted versus nonadapted strains 12.3.2 In silico analysis as a valuable tool 12.4 Alternative front-runners: fungi, yeast, and algae-mediated azo dye degradation 12.5 Future perspective References 13 Development in wastewater treatment plant design 13.1 Introduction 13.1.1 Conventional wastewater treatment technology 13.1.1.1 Primary treatment 13.1.1.1.1 Screens 13.1.1.1.2 Grit chambers 13.1.1.1.3 Primary settlers or sedimentation 13.1.1.2 Secondary treatment 13.1.1.2.1 Aerobic treatment system 13.1.1.2.2 Anaerobic treatment 13.1.1.3 Tertiary treatment 13.1.2 Recent advances achieved in wastewater treatment plant 13.1.2.1 Primary treatment 13.1.2.2 Secondary treatment 13.1.2.2.1 Aerobic secondary treatment 13.1.2.2.2 Anaerobic secondary treatment 13.2 Tertiary treatment 13.3 Conclusion References 14 Engineering biomaterials for the bioremediation: advances in nanotechnological approaches for heavy metals removal from ... 14.1 Introduction 14.2 Bioremediation 14.3 Nanotechnology and bioremediation 14.3.1 Nanomaterials used for removing pollutants 14.3.1.1 Carbon-based nanomaterials 14.3.1.2 Hydroxyapatite nanomaterials 14.3.1.3 Metallic nanoparticles 14.3.1.4 Biogenic uraninite nanoparticles 14.3.1.5 Dendrimers 14.3.1.6 Polymeric nanocomposites 14.3.1.7 Nanozymes 14.3.1.8 Microorganisms 14.3.2 Bioremediation of soil 14.3.2.1 Phytoremediation 14.3.2.2 Microbial bioremediation 14.3.2.3 Nanomaterials based bioremediation 14.4 Conclusion Acknowledgement References 15 Algal–bacterial symbiosis and its application in wastewater treatment 15.1 Introduction 15.2 The symbiotic process 15.2.1 Exchange of information in the form of bioactive compounds for symbiosis 15.2.1.1 Quorum sensing 15.2.2 Exudates that can inhibit the microbes in the vicinity 15.2.3 Exudates that can stimulate the microbes in the vicinity 15.2.3.1 Cofactor auxotrophy 15.2.4 Factors affecting symbiotic systems 15.2.4.1 Dissolved oxygen 15.2.4.2 Carbon dioxide 15.2.4.3 Light 15.2.4.4 Hydraulic retention time 15.2.4.5 Initial algae:bacteria ratio 15.2.4.6 Substrate concentrations 15.2.4.7 pH and temperature 15.3 Applications in wastewater treatment 15.3.1 Types of reactors 15.3.2 Nutrients removal 15.3.3 Metal removal 15.3.4 Organic matter removal 15.3.5 Emerging contaminants removal 15.3.6 Removal of refractory compounds 15.4 Energy generation 15.4.1 Algal biohydrogen production 15.4.2 Algal lipid production 15.4.3 Microbial fuel cell reactor using algal–bacteria interaction 15.5 Conclusion and future directions References 16 Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L. 16.1 Introduction 16.2 Different genera of plant growth–promoting rhizobacteria 16.3 Plant growth–promoting rhizobacteria role in heavy metals dynamics in the soil 16.4 Plant growth–promoting rhizobacteria’s role in controlling pathogens in rice 16.5 Plant growth–promoting rhizobacteria in remediation of the environment 16.6 Conclusion and future prospect References Further reading 17 Study of transport models for arsenic removal using nanofiltration process: recent perspectives 17.1 Introduction 17.1.1 Sources 17.1.1.1 Anthropogenic sources 17.1.1.2 Natural sources 17.1.2 Health effects 17.1.3 Permissible limit 17.2 Chemistry of arsenic 17.3 Methods of arsenic removal from water/wastewater 17.3.1 Membrane technology 17.4 Nanofiltration of arsenic 17.4.1 Modeling of nanofiltration membranes for arsenic removal 17.5 Conclusion and future perspective Nomenclature Greek symbols Abbreviations References Further Reading 18 Bioremediation and biorecovery of aqueous lead by local lead-resistant organisms 18.1 Introduction 18.2 Remediation of Pb 18.2.1 Conventional methods for Pb remediation or recovery 18.2.2 Bioremediation of Pb 18.2.3 Mechanisms of bioremediation 18.3 Case study of aqueous Pb biorecovery by local Pb-resistant organisms 18.3.1 Characterization of bacterial consortia 18.3.2 Precipitate identification 18.3.3 Microbiological and kinetic study 18.3.3.1 Laboratory-scale system design and experimental approach 18.3.3.2 Laboratory-scale system results and discussion 18.3.4 Case studies of varied operating conditions 18.3.4.1 Effect of elevated heavy metal concentrations 18.3.4.2 Effect of Zn(II) or Cu(II) ions on Pb(II) bioprecipitation 18.3.4.3 The minimum inhibitory concentration of Pb(II) for the B-consortium 18.3.4.4 Effect of substrate composition 18.4 Conclusion and outlook Acknowledgment References 19 Microbial bioremediation of azo dye through microbiological approach 19.1 Introduction 19.2 Classification of dyes 19.3 Role of environmental parameters on microbial biodegradation and bioremediation of azo dye 19.4 Effects of environmental parameters on azo dye degradation 19.4.1 Temperature 19.4.2 Oxygen 19.4.3 Dye concentration 19.4.4 Electron donor 19.4.5 pH 19.4.6 Dye structure 19.4.7 Redox potential 19.4.8 Redox mediator 19.4.9 Decolorization by genetically modified organisms 19.5 Conclusion References Further reading 20 Novel process of ellagic acid synthesis from waste generated from mango pulp processing industries 20.1 Introduction 20.1.1 Waste from mango pulp processing industries 20.2 Composition of mango wastes 20.3 Types of tannins 20.4 Bioconversion of tannin to ellagic acid 20.5 Microbes involved in the production of ellagic acid 20.6 Applications of ellagic acid 20.7 Conclusion References Further reading Index Back Cover