ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Emerging Technologies and Biological Systems for Biogas Upgrading

دانلود کتاب فن آوری های نوظهور و سیستم های بیولوژیکی برای ارتقاء بیوگاز

Emerging Technologies and Biological Systems for Biogas Upgrading

مشخصات کتاب

Emerging Technologies and Biological Systems for Biogas Upgrading

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128228083, 9780128228081 
ناشر: Academic Press 
سال نشر: 2021 
تعداد صفحات: 530
[509] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 Mb 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Emerging Technologies and Biological Systems for Biogas Upgrading به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های نوظهور و سیستم های بیولوژیکی برای ارتقاء بیوگاز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فن آوری های نوظهور و سیستم های بیولوژیکی برای ارتقاء بیوگاز

فن‌آوری‌های نوظهور و سیستم‌های بیولوژیکی برای ارتقای بیوگاز به طور سیستماتیک اصول اساسی و پیشرفته‌ترین فن‌آوری‌های پاک‌سازی و ارتقای بیوگاز را با تأکید ویژه بر فرآیندهای بیولوژیکی برای دی‌اکسید کربن (CO2)، سولفید هیدروژن (H2S)، سیلوکسان، خلاصه می‌کند. و حذف هیدروکربن پس از تجزیه و تحلیل سناریوی جهانی تولید، ارتقا و استفاده بیوگاز، این کتاب در مورد ادغام فرآیندهای متاناسیون به سیستم های نیرو به گاز برای تولید متان (CH4) و فن آوری های ارتقاء فیزیکوشیمیایی، مانند جذب شیمیایی، شستشوی آب، جذب نوسان فشار بحث می کند. و استفاده از غشا. سپس به بررسی فناوری‌های جدیدتر و پایدارتر ارتقاء یافته، مانند فرآیندهای فتوسنتزی با استفاده از جلبک، تکنیک‌های میکروبی با واسطه هیدروژن، روش‌های الکتروشیمیایی، بیوالکتروشیمیایی و برودتی می‌پردازد. حذف H2S با بیوفیلترها و همچنین حذف سیلوکسان ها از طریق پلیمریزاسیون، پراکسیداسیون، تجزیه بیولوژیکی و جذب گاز-مایع پوشش داده شده است. نویسندگان همچنین به طور کامل مسائل مربوط به محدودیت انتقال جرم در بیومتاناسیون از گازهای زائد، ارتقاء بیوگاز و ارزیابی چرخه عمر فناوری‌های ارتقاء یافته، جنبه‌های فنی-اقتصادی، چالش‌های ارتقاء مقیاس و روندهای آتی را در نظر می‌گیرند. ارائه اطلاعات خاص در مورد فناوری ارتقاء بیوگاز، و تمرکز بر آخرین پیشرفت‌ها، فناوری‌های نوظهور و سیستم‌های بیولوژیکی برای ارتقای بیوگاز منبعی منحصر به فرد برای محققان، مهندسان و دانشجویان فارغ‌التحصیل در زمینه تولید و استفاده از بیوگاز، از جمله پسماند به انرژی و قدرت به گاز همچنین برای کارآفرینان، مشاوران و تصمیم گیرندگان در سازمان های دولتی در زمینه های انرژی پایدار، حفاظت از محیط زیست، انتشار گازهای گلخانه ای و تغییرات آب و هوایی و برنامه ریزی استراتژیک مفید است. تمام فناوری‌های اصلی برای ارتقای بیوگاز از طریق فرآیندهای فیزیوشیمیایی، بیولوژیکی و الکتروشیمیایی را بررسی می‌کند. درباره تکنیک‌های حذف CO2، H2S و سیلوکسان بحث می‌کند. یکپارچه سازی سیستم ها


توضیحاتی درمورد کتاب به خارجی

Emerging Technologies and Biological Systems for Biogas Upgrading systematically summarizes the fundamental principles and the state-of-the-art of biogas cleaning and upgrading technologies, with special emphasis on biological processes for carbon dioxide (CO2), hydrogen sulfide (H2S), siloxane, and hydrocarbon removal. After analyzing the global scenario of biogas production, upgrading and utilization, this book discusses the integration of methanation processes to power-to-gas systems for methane (CH4) production and physiochemical upgrading technologies, such as chemical absorption, water scrubbing, pressure swing adsorption and the use of membranes. It then explores more recent and sustainable upgrading technologies, such as photosynthetic processes using algae, hydrogen-mediated microbial techniques, electrochemical, bioelectrochemical, and cryogenic approaches. H2S removal with biofilters is also covered, as well as removal of siloxanes through polymerization, peroxidation, biological degradation and gas-liquid absorption. The authors also thoroughly consider issues of mass transfer limitation in biomethanation from waste gas, biogas upgrading and life cycle assessment of upgrading technologies, techno-economic aspects, challenges for upscaling, and future trends. Providing specific information on biogas upgrading technology, and focusing on the most recent developments, Emerging Technologies and Biological Systems for Biogas Upgrading is a unique resource for researchers, engineers, and graduate students in the field of biogas production and utilization, including waste-to-energy and power-to-gas. It is also useful for entrepreneurs, consultants, and decision-makers in governmental agencies in the fields of sustainable energy, environmental protection, greenhouse gas emissions and climate change, and strategic planning. Explores all major technologies for biogas upgrading through physiochemical, biological, and electrochemical processes Discusses CO2, H2S, and siloxane removal techniques Provides a systematical approach to discuss technologies, including challenges to gas-liquid mass transfer, life cycle assessment, technoeconomic implications, upscaling and systems integration



فهرست مطالب

Title-page_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgr
	Emerging Technologies and Biological Systems for Biogas Upgrading
Copyright_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgra
	Copyright
Contents_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrad
	Contents
List-of-contribut_2021_Emerging-Technologies-and-Biological-Systems-for-Biog
	List of contributors
Foreword_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrad
	Foreword
Preface_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgradi
	Preface
Chapter-1---Status-of-biogas-production_2021_Emerging-Technologies-and-Biolo
	1 Status of biogas production and biogas upgrading: A global scenario
		1.1 Introduction
		1.2 State-of-the-art of biogas production and upgradation
		1.3 Recent trends in biogas utilization: A global prospective
		1.4 Anaerobic digestion
			1.4.1 Mechanism of anaerobic digestion
				1.4.1.1 Hydrolysis and acidogenesis
				1.4.1.2 Acetogenesis
				1.4.1.3 Methanogenesis
			1.4.2 Factors affecting biogas production
				1.4.2.1 Hydrolysis
				1.4.2.2 pH
				1.4.2.3 Temperature
				1.4.2.4 Substrate load
				1.4.2.5 C/N ratio
				1.4.2.6 Hydraulic retention time
		1.5 Biohythane
		1.6 Electrochemically induced biogas upgradation
			1.6.1 Conductive materials in biogas upgradation
		1.7 Challenges and way forward
		Acknowledgments
		References
Chapter-2---Chemical-absorption-amine-abs_2021_Emerging-Technologies-and-Bio
	2 Chemical absorption—amine absorption/stripping technology for biogas upgrading
		2.1 Introduction
		2.2 Process fundamentals
			2.2.1 Amine chemistry
			2.2.2 Amine selection
			2.2.3 Process description and technology
				2.2.3.1 General process
				2.2.3.2 Absorption and desorption columns
			2.2.4 Energy consumption
			2.2.5 Operational problems and emissions
				2.2.5.1 Amine losses
				2.2.5.2 Degradation of absorbent
				2.2.5.3 Methane losses
				2.2.5.4 Foaming
			2.2.6 Economic considerations
		2.3 Research and development directions
			2.3.1 Novel liquid absorbents
			2.3.2 Water-lean solvents/nonaqueous amine solvents
			2.3.3 Amine-functionalized solid sorbents
			2.3.4 Process optimization
		2.4 Conclusions and future perspectives
		References
		Further reading
Chapter-3---Water-scrubbing-for-biogas-_2021_Emerging-Technologies-and-Biolo
	3 Water scrubbing for biogas upgrading: developments and innovations
		3.1 Introduction
		3.2 Absorption methodologies
			3.2.1 Absorption in water (water scrubbing)
			3.2.2 Absorption in NaOH solutions (alkaline scrubbing)
			3.2.3 Absorption in K2CO3 solutions (hot potassium carbonate)
		3.3 Absorption configurations
			3.3.1 Packed column reactors
			3.3.2 Hollow fiber membrane contactors
		3.4 Chemical promoters in water absorption
		3.5 Energy consumption
		3.6 Methane slip and efficiency
		3.7 Conclusions
		References
Chapter-4---Factors-affecting-CO2-and-CH4-se_2021_Emerging-Technologies-and-
	4 Factors affecting CO2 and CH4 separation during biogas upgrading in a water scrubbing process
		4.1 Introduction
		4.2 Approaches for CO2 removal from biogas
		4.3 Water scrubbing technology
		4.4 Water as a solvent for gases
		4.5 Solubility of biogas components in water
		4.6 Factors affecting biogas upgrading in water scrubbing process
			4.6.1 Effects of operating parameters on CO2 removal in water scrubber
				4.6.1.1 Pressure
				4.6.1.2 Temperature
				4.6.1.3 Water flow rate
				4.6.1.4 Gas flow rate
			4.6.2 Effect of packed-bed design parameters
				4.6.2.1 Packing
				4.6.2.2 Diameter
				4.6.2.3 Height
		4.7 Scrubbing column internals
			4.7.1 Packing support and gas distributor
			4.7.2 Liquid distribution and redistribution
			4.7.3 Demister or entrainment eliminator or mist eliminator
		4.8 Major challenges and future directions
		4.9 Conclusion
		Acknowledgments
		References
Chapter-5---Recent-developments-in-press_2021_Emerging-Technologies-and-Biol
	5 Recent developments in pressure swing adsorption for biomethane production
		5.1 Introduction
		5.2 Types of swing adsorption technologies
			5.2.1 Temperature swing adsorption
			5.2.2 Electric swing adsorption
			5.2.3 Vacuum swing adsorption
			5.2.4 Pressure swing adsorption
		5.3 Parameters influencing pressure swing adsorption
			5.3.1 Process performance indicators
			5.3.2 Design parameters
				5.3.2.1 Pressure range
				5.3.2.2 Pressure equalization
				5.3.2.3 Time cycle
					Pressurization time
					Adsorption time
					Blowdown time
					Purge time
				5.3.2.4 Pressure swing adsorption sizing
				5.3.2.5 Pressure
				5.3.2.6 Purge-to-feed ratio
				5.3.2.7 Flow rate
				5.3.2.8 Column length
			5.3.3 Adsorbents
				5.3.3.1 Carbon-based adsorbents
					Activated carbons
					Carbon molecular sieves
				5.3.3.2 Zeolites
				5.3.3.3 Porous crystals
		5.4 Adsorption isotherm
		5.5 Adsorption kinetics
			5.5.1 Molecular diffusion
			5.5.2 Knudsen diffusivity
			5.5.3 Poiseuille diffusion or viscous diffusion
		5.6 Mathematical modeling
		5.7 Conclusion and future perspectives
		References
Chapter-6---Membrane-based-technology_2021_Emerging-Technologies-and-Biologi
	6 Membrane-based technology for methane separation from biogas
		6.1 Introduction: how the basic membrane processes for gas separation have evolved
		6.2 Basic terms of gas separation on membranes
		6.3 Membrane materials and structures
			6.3.1 Polymer structures and their influence in permeation
			6.3.2 Inorganic membranes for gas separation
			6.3.3 Carbon molecular sieve membranes
			6.3.4 Mixed-matrix membranes
			6.3.5 Results of membrane operations with different materials
		6.4 Theory of transport in gas separation on membranes
			6.4.1 Transport through rubbery polymers
			6.4.2 Transport equations through glassy polymers
		6.5 Membrane configurations and plant design for upgrading biogas
		6.6 Recent developments in membrane-based CO2/CH4 separation
			6.6.1 Biogas upgrading by cryogenic and hybrid cryogenic-membrane separation
			6.6.2 Biogas upgrading by absorption and hybrid absorption-membrane
			6.6.3 Microbial conversion of CO2 to CH4 on a membrane diffuser
		6.7 Summary and outlook
		6.8 Future developments
		References
Chapter-7---Cryogenic-techniques--an-i_2021_Emerging-Technologies-and-Biolog
	7 Cryogenic techniques: an innovative approach for biogas upgrading
		7.1 Introduction
		7.2 Cryogenic biogas upgrading
			7.2.1 Cryogenic distillation
			7.2.2 Cryogenic packed-bed technology
		7.3 Cryogenic hybrid systems
			7.3.1 Cryogenic-absorption combination process
			7.3.2 Cryogenic-adsorption synergized process
			7.3.3 Potential combination of cryogenic and membrane processes
			7.3.4 Cryogenic-hydrate processes
		7.4 Cryogenic-membrane processes
		7.5 Full-scale experiences and technoeconomic studies
		7.6 Comparison of documented technologies
		7.7 Conclusions and future perspectives
		Appendix I: Conversion factor for unit transformations
		Appendix II: State forms for CO2 and CH4 as a function of temperature and pressure
		Acknowledgments
		References
Chapter-8---Power-to-gas-fo_2021_Emerging-Technologies-and-Biological-System
	8 Power-to-gas for methanation
		8.1 Introduction
		8.2 Electrocatalytic methanation
			8.2.1 Alkaline electrolyzers
				8.2.1.1 Definition and concept
				8.2.1.2 Reactor configurations
				8.2.1.3 Recent developments
			8.2.2 Polymer electrolyte membrane electrolyzers
				8.2.2.1 Design and concept
				8.2.2.2 Reactor configurations
				8.2.2.3 Recent developments
			8.2.3 Solid oxide electrolyzers
				8.2.3.1 Design and concept
				8.2.3.2 Reactor configurations
				8.2.3.3 Recent developments
			8.2.4 Fixed-bed methanation reactors
				8.2.4.1 Design and concept
				8.2.4.2 Reactor configurations
				8.2.4.3 Recent developments
			8.2.5 Fluidized bed methanation reactors
				8.2.5.1 Design and concept
				8.2.5.2 Reactor configurations
				8.2.5.3 Recent developments
			8.2.6 Three-phase reactor
				8.2.6.1 Design and concept
				8.2.6.2 Reactor configurations
			8.2.7 Micro(channel) reactors
		8.3 Bioelectrochemical methanation
			8.3.1 Direct electron transfer
			8.3.2 Biocathodes
			8.3.3 Reactor configurations
		8.4 Challenges and future prospects
		References
Chapter-9---Electrochemical-appro_2021_Emerging-Technologies-and-Biological-
	9 Electrochemical approach for biogas upgrading
		9.1 Introduction
		9.2 Faradaic and energy efficiency
		9.3 Electroreduction of CO2
			9.3.1 Basic considerations
				9.3.1.1 Solid-oxide devices
				9.3.1.2 Liquid electrolyte devices
			9.3.2 Reactor and process design
		9.4 Electrochemical oxidation of H2S
			9.4.1 Basic considerations
			9.4.2 Reactor and process design
		9.5 Biogas upgrading approach and its challenges
			9.5.1 CO2 electroreduction
			9.5.2 H2S oxidation
			9.5.3 Biogas and scale-up approaches
		9.6 Concluding remarks and perspectives
		Acknowledgments
		References
Chapter-10---Siloxanes-removal-from-bi_2021_Emerging-Technologies-and-Biolog
	10 Siloxanes removal from biogas and emerging biological techniques
		10.1 Introduction
		10.2 Methods for reducing the content of volatile organic silicon compounds in biogas
			10.2.1 Pretreatment methods
			10.2.2 Refrigeration and freezing methods
			10.2.3 Adsorption methods
				10.2.3.1 Adsorption into activated carbon
					Adsorption capacity of activated carbon
					Mutual displacement of volatile methylsiloxanes from activated carbon
					Preparation of biogas for adsorption into activated carbon
					Possibilities of activated carbon regeneration
				10.2.3.2 Adsorption into silica gel
					Adsorption capacity and regeneration of silica gel
				10.2.3.3 Adsorption into zeolites
					Adsorption capacity and regeneration of zeolites
				10.2.3.4 Adsorption into alumina
					Adsorption capacity and regeneration of activated Al2O3
				10.2.3.5 Adsorption into polymer adsorbents
					Adsorption capacity and regeneration of some novel polymer adsorbents
			10.2.4 Absorption methods
			10.2.5 Membrane techniques
			10.2.6 Biological methods
		10.3 Combined methods for volatile organic silicon compounds removal from biogas
		10.4 Comparison of the methods for reducing the content of volatile organic silicon compounds in biogas
		10.5 Conclusions and future perspective
		References
Chapter-11---Technologies-for-removal-_2021_Emerging-Technologies-and-Biolog
	11 Technologies for removal of hydrogen sulfide (H2S) from biogas
		11.1 Introduction
		11.2 Technologies for removal of biogas contaminants
		11.3 Physicochemical removal technologies
			11.3.1 Absorption process
				11.3.1.1 Water scrubbing
				11.3.1.2 Physical absorption by using organic solvents
			11.3.2 Adsorption process
				11.3.2.1 Adsorption
				11.3.2.2 Adsorption onto activated carbon
				11.3.2.3 Adsorption on metal oxides
				11.3.2.4 Pressure swing adsorption system
			11.3.3 Membrane separation
				11.3.3.1 Separation types
				11.3.3.2 Membrane types
		11.4 Ex situ removal using sulfur-oxidizing microorganisms
			11.4.1 Biological air filtration
				11.4.1.1 Anoxic biological air filters
				11.4.1.2 Aerobic biological air filters
				11.4.1.3 Commercial applications of biological air filtration systems
			11.4.2 Microalgal removal of H2S
		11.5 In situ H2S removal
			11.5.1 In situ microaeration
			11.5.2 Dosing iron salts/oxides into the digester
		11.6 Combined chemical-biological processes
		11.7 Comparison of H2S removal techniques
		11.8 Conclusions
		References
Chapter-12---Biological-upgrading-of-b_2021_Emerging-Technologies-and-Biolog
	12 Biological upgrading of biogas through CO2 conversion to CH4
		12.1 Biogas upgrading
		12.2 Hydrogen generation and utilization
		12.3 Methanation
		12.4 Microbial basis for biomethanation
			12.4.1 Methanogens
			12.4.2 Processes in anaerobic digestion
		12.5 Reactor configurations
			12.5.1 In situ biomethanation
			12.5.2 Ex situ biomethanation
		12.6 Factors controlling biomethanation
			12.6.1 Mass transfer of H2
				12.6.1.1 H2 partial pressure in gas phase
				12.6.1.2 Interfacial area
				12.6.1.3 Methanogenic activity
			12.6.2 Temperature
			12.6.3 Growth requirements
			12.6.4 pH and CO2
			12.6.5 Bacterial interaction and competition
		12.7 Reactor design for biological methanation
			12.7.1 Continuous stirred tank reactor
			12.7.2 Trickle-bed reactors
		12.8 Future perspectives and applications
		12.9 Conclusions
		Abbreviations list
		References
Chapter-13---Bioelectrochemical-systems-_2021_Emerging-Technologies-and-Biol
	13 Bioelectrochemical systems for biogas upgrading and biomethane production
		13.1 Background
		13.2 Fundamentals of bioelectrochemical biogas upgrading
		13.3 Methane enrichment of biogas
			13.3.1 Electron transfer mechanism
			13.3.2 Microbial communities in biocathode for methane enrichment
			13.3.3 State-of-the-art bioelectrochemical biogas upgrading
		13.4 Economical insights
		13.5 Prospective and challenges
		13.6 Conclusion
		Acknowledgments
		References
Chapter-14---Photosynthetic-biogas-upgradin_2021_Emerging-Technologies-and-B
	14 Photosynthetic biogas upgrading: an attractive biological technology for biogas upgrading
		14.1 Introduction
		14.2 Positive attributes of photosynthetic “microalgae” toward biogas upgradation
		14.3 CO2 and H2S removal through photosynthetic-bacterial associated biogas upgradation
		14.4 Microalgae-based biogas upgrading and concomitant wastewater treatment
		14.5 Photobioreactor designs for biogas upgradation
		14.6 Impact of different process variables in biogas upgradation
			14.6.1 Light intensity
			14.6.2 Media pH
			14.6.3 Temperature
			14.6.4 Biogas composition
			14.6.5 Gas flow rate
		14.7 The future prospects
		14.8 Conclusion
		References
Chapter-15---Biogas-upgrading-and-life-cycl_2021_Emerging-Technologies-and-B
	15 Biogas upgrading and life cycle assessment of different biogas upgrading technologies
		15.1 Introduction
		15.2 Biomethanation
			15.2.1 Cleaning of biogas
				15.2.1.1 Removal of water
				15.2.1.2 Removal of H2S
				15.2.1.3 Removal of other impurities
			15.2.2 Upgrading of biogas into biomethane
				15.2.2.1 Absorption
				15.2.2.2 Adsorption
				15.2.2.3 Membrane separation
				15.2.2.4 Cryogenic separation
		15.3 Brief overview of life cycle assessment
		15.4 Life cycle assessment of biogas upgrading technologies
		15.5 Conclusions
		Acknowledgment
		References
		Further reading
Chapter-16---The-role-of-techno-economic-implica_2021_Emerging-Technologies-
	16 The role of techno-economic implications and governmental policies in accelerating the promotion of biomethane technologies
		16.1 Introduction
		16.2 Role of techno-economic studies in anaerobic digestion
			16.2.1 Feedstocks
			16.2.2 Gas purification technology
			16.2.3 Biogas utilization
			16.2.4 Subsidies
		16.3 Successful policies in anaerobic digestion implementation
			16.3.1 Policies and regulations
			16.3.2 Renewable energy-related policies and regulations
				16.3.2.1 Renewable energy generation targets
				16.3.2.2 Greenhouse gas emission reduction targets
				16.3.2.3 Rural development
			16.3.3 Agriculture policies and regulations
			16.3.4 Waste management policies
			16.3.5 Incentives
				16.3.5.1 Feed-in tariff (FIT)
				16.3.5.2 Credits for carbon reduction and carbon trading
				16.3.5.3 Tax exemptions and tax credits
				16.3.5.4 Credits for renewable energy and renewable transportation fuel
				16.3.5.5 Credits for nutrient load reduction
				16.3.5.6 Renewable heat incentive
			16.3.6 Policy instruments introduced in various countries as a support to AD industry growth
				16.3.6.1 Germany
				16.3.6.2 The United States
				16.3.6.3 The United Kingdom
				16.3.6.4 Italy
				16.3.6.5 Sweden
				16.3.6.6 China
				16.3.6.7 India
				16.3.6.8 Others
		16.4 Decision-support system for biomethane implantation with techno-economic analysis and policies
		16.5 Conclusion
		References
Chapter-17---Large-scale-biogas-upgrading-_2021_Emerging-Technologies-and-Bi
	17 Large-scale biogas upgrading plants: future prospective and technical challenges
		17.1 Introduction
		17.2 Biogas composition and feedstock types
		17.3 Biogas upgrading for natural gas grid injection and transport fuel
		17.4 State-of-the-art of large-scale biogas upgrading technologies
			17.4.1 Physicochemical upgrading technologies
			17.4.2 Power-to-gas technology for methanation
				17.4.2.1 Catalytic/thermochemical methanation
					ETOGAS and Audi e-gas technology
					Haldor Topsøe
					Methane gas storage of renewable energy
				17.4.2.2 Chemoautotrophic (biological) methanation
					Electrochaea
					MicrobEnergy
			17.4.3 Bioelectrochemical system (Cambrian Innovation)
			17.4.4 Photosynthetic biogas upgrading system
		17.5 Conclusion and future perspective
		References
Index_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrading
	Index




نظرات کاربران