دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Nabin Aryal, Lars Ditlev Morck Ottosen, Michael Vedel Wegener Kofoed, Deepak Pant سری: ISBN (شابک) : 0128228083, 9780128228081 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 530 [509] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Emerging Technologies and Biological Systems for Biogas Upgrading به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های نوظهور و سیستم های بیولوژیکی برای ارتقاء بیوگاز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فنآوریهای نوظهور و سیستمهای بیولوژیکی برای ارتقای بیوگاز به طور سیستماتیک اصول اساسی و پیشرفتهترین فنآوریهای پاکسازی و ارتقای بیوگاز را با تأکید ویژه بر فرآیندهای بیولوژیکی برای دیاکسید کربن (CO2)، سولفید هیدروژن (H2S)، سیلوکسان، خلاصه میکند. و حذف هیدروکربن پس از تجزیه و تحلیل سناریوی جهانی تولید، ارتقا و استفاده بیوگاز، این کتاب در مورد ادغام فرآیندهای متاناسیون به سیستم های نیرو به گاز برای تولید متان (CH4) و فن آوری های ارتقاء فیزیکوشیمیایی، مانند جذب شیمیایی، شستشوی آب، جذب نوسان فشار بحث می کند. و استفاده از غشا. سپس به بررسی فناوریهای جدیدتر و پایدارتر ارتقاء یافته، مانند فرآیندهای فتوسنتزی با استفاده از جلبک، تکنیکهای میکروبی با واسطه هیدروژن، روشهای الکتروشیمیایی، بیوالکتروشیمیایی و برودتی میپردازد. حذف H2S با بیوفیلترها و همچنین حذف سیلوکسان ها از طریق پلیمریزاسیون، پراکسیداسیون، تجزیه بیولوژیکی و جذب گاز-مایع پوشش داده شده است. نویسندگان همچنین به طور کامل مسائل مربوط به محدودیت انتقال جرم در بیومتاناسیون از گازهای زائد، ارتقاء بیوگاز و ارزیابی چرخه عمر فناوریهای ارتقاء یافته، جنبههای فنی-اقتصادی، چالشهای ارتقاء مقیاس و روندهای آتی را در نظر میگیرند. ارائه اطلاعات خاص در مورد فناوری ارتقاء بیوگاز، و تمرکز بر آخرین پیشرفتها، فناوریهای نوظهور و سیستمهای بیولوژیکی برای ارتقای بیوگاز منبعی منحصر به فرد برای محققان، مهندسان و دانشجویان فارغالتحصیل در زمینه تولید و استفاده از بیوگاز، از جمله پسماند به انرژی و قدرت به گاز همچنین برای کارآفرینان، مشاوران و تصمیم گیرندگان در سازمان های دولتی در زمینه های انرژی پایدار، حفاظت از محیط زیست، انتشار گازهای گلخانه ای و تغییرات آب و هوایی و برنامه ریزی استراتژیک مفید است. تمام فناوریهای اصلی برای ارتقای بیوگاز از طریق فرآیندهای فیزیوشیمیایی، بیولوژیکی و الکتروشیمیایی را بررسی میکند. درباره تکنیکهای حذف CO2، H2S و سیلوکسان بحث میکند. یکپارچه سازی سیستم ها
Emerging Technologies and Biological Systems for Biogas Upgrading systematically summarizes the fundamental principles and the state-of-the-art of biogas cleaning and upgrading technologies, with special emphasis on biological processes for carbon dioxide (CO2), hydrogen sulfide (H2S), siloxane, and hydrocarbon removal. After analyzing the global scenario of biogas production, upgrading and utilization, this book discusses the integration of methanation processes to power-to-gas systems for methane (CH4) production and physiochemical upgrading technologies, such as chemical absorption, water scrubbing, pressure swing adsorption and the use of membranes. It then explores more recent and sustainable upgrading technologies, such as photosynthetic processes using algae, hydrogen-mediated microbial techniques, electrochemical, bioelectrochemical, and cryogenic approaches. H2S removal with biofilters is also covered, as well as removal of siloxanes through polymerization, peroxidation, biological degradation and gas-liquid absorption. The authors also thoroughly consider issues of mass transfer limitation in biomethanation from waste gas, biogas upgrading and life cycle assessment of upgrading technologies, techno-economic aspects, challenges for upscaling, and future trends. Providing specific information on biogas upgrading technology, and focusing on the most recent developments, Emerging Technologies and Biological Systems for Biogas Upgrading is a unique resource for researchers, engineers, and graduate students in the field of biogas production and utilization, including waste-to-energy and power-to-gas. It is also useful for entrepreneurs, consultants, and decision-makers in governmental agencies in the fields of sustainable energy, environmental protection, greenhouse gas emissions and climate change, and strategic planning. Explores all major technologies for biogas upgrading through physiochemical, biological, and electrochemical processes Discusses CO2, H2S, and siloxane removal techniques Provides a systematical approach to discuss technologies, including challenges to gas-liquid mass transfer, life cycle assessment, technoeconomic implications, upscaling and systems integration
Title-page_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgr Emerging Technologies and Biological Systems for Biogas Upgrading Copyright_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgra Copyright Contents_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrad Contents List-of-contribut_2021_Emerging-Technologies-and-Biological-Systems-for-Biog List of contributors Foreword_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrad Foreword Preface_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgradi Preface Chapter-1---Status-of-biogas-production_2021_Emerging-Technologies-and-Biolo 1 Status of biogas production and biogas upgrading: A global scenario 1.1 Introduction 1.2 State-of-the-art of biogas production and upgradation 1.3 Recent trends in biogas utilization: A global prospective 1.4 Anaerobic digestion 1.4.1 Mechanism of anaerobic digestion 1.4.1.1 Hydrolysis and acidogenesis 1.4.1.2 Acetogenesis 1.4.1.3 Methanogenesis 1.4.2 Factors affecting biogas production 1.4.2.1 Hydrolysis 1.4.2.2 pH 1.4.2.3 Temperature 1.4.2.4 Substrate load 1.4.2.5 C/N ratio 1.4.2.6 Hydraulic retention time 1.5 Biohythane 1.6 Electrochemically induced biogas upgradation 1.6.1 Conductive materials in biogas upgradation 1.7 Challenges and way forward Acknowledgments References Chapter-2---Chemical-absorption-amine-abs_2021_Emerging-Technologies-and-Bio 2 Chemical absorption—amine absorption/stripping technology for biogas upgrading 2.1 Introduction 2.2 Process fundamentals 2.2.1 Amine chemistry 2.2.2 Amine selection 2.2.3 Process description and technology 2.2.3.1 General process 2.2.3.2 Absorption and desorption columns 2.2.4 Energy consumption 2.2.5 Operational problems and emissions 2.2.5.1 Amine losses 2.2.5.2 Degradation of absorbent 2.2.5.3 Methane losses 2.2.5.4 Foaming 2.2.6 Economic considerations 2.3 Research and development directions 2.3.1 Novel liquid absorbents 2.3.2 Water-lean solvents/nonaqueous amine solvents 2.3.3 Amine-functionalized solid sorbents 2.3.4 Process optimization 2.4 Conclusions and future perspectives References Further reading Chapter-3---Water-scrubbing-for-biogas-_2021_Emerging-Technologies-and-Biolo 3 Water scrubbing for biogas upgrading: developments and innovations 3.1 Introduction 3.2 Absorption methodologies 3.2.1 Absorption in water (water scrubbing) 3.2.2 Absorption in NaOH solutions (alkaline scrubbing) 3.2.3 Absorption in K2CO3 solutions (hot potassium carbonate) 3.3 Absorption configurations 3.3.1 Packed column reactors 3.3.2 Hollow fiber membrane contactors 3.4 Chemical promoters in water absorption 3.5 Energy consumption 3.6 Methane slip and efficiency 3.7 Conclusions References Chapter-4---Factors-affecting-CO2-and-CH4-se_2021_Emerging-Technologies-and- 4 Factors affecting CO2 and CH4 separation during biogas upgrading in a water scrubbing process 4.1 Introduction 4.2 Approaches for CO2 removal from biogas 4.3 Water scrubbing technology 4.4 Water as a solvent for gases 4.5 Solubility of biogas components in water 4.6 Factors affecting biogas upgrading in water scrubbing process 4.6.1 Effects of operating parameters on CO2 removal in water scrubber 4.6.1.1 Pressure 4.6.1.2 Temperature 4.6.1.3 Water flow rate 4.6.1.4 Gas flow rate 4.6.2 Effect of packed-bed design parameters 4.6.2.1 Packing 4.6.2.2 Diameter 4.6.2.3 Height 4.7 Scrubbing column internals 4.7.1 Packing support and gas distributor 4.7.2 Liquid distribution and redistribution 4.7.3 Demister or entrainment eliminator or mist eliminator 4.8 Major challenges and future directions 4.9 Conclusion Acknowledgments References Chapter-5---Recent-developments-in-press_2021_Emerging-Technologies-and-Biol 5 Recent developments in pressure swing adsorption for biomethane production 5.1 Introduction 5.2 Types of swing adsorption technologies 5.2.1 Temperature swing adsorption 5.2.2 Electric swing adsorption 5.2.3 Vacuum swing adsorption 5.2.4 Pressure swing adsorption 5.3 Parameters influencing pressure swing adsorption 5.3.1 Process performance indicators 5.3.2 Design parameters 5.3.2.1 Pressure range 5.3.2.2 Pressure equalization 5.3.2.3 Time cycle Pressurization time Adsorption time Blowdown time Purge time 5.3.2.4 Pressure swing adsorption sizing 5.3.2.5 Pressure 5.3.2.6 Purge-to-feed ratio 5.3.2.7 Flow rate 5.3.2.8 Column length 5.3.3 Adsorbents 5.3.3.1 Carbon-based adsorbents Activated carbons Carbon molecular sieves 5.3.3.2 Zeolites 5.3.3.3 Porous crystals 5.4 Adsorption isotherm 5.5 Adsorption kinetics 5.5.1 Molecular diffusion 5.5.2 Knudsen diffusivity 5.5.3 Poiseuille diffusion or viscous diffusion 5.6 Mathematical modeling 5.7 Conclusion and future perspectives References Chapter-6---Membrane-based-technology_2021_Emerging-Technologies-and-Biologi 6 Membrane-based technology for methane separation from biogas 6.1 Introduction: how the basic membrane processes for gas separation have evolved 6.2 Basic terms of gas separation on membranes 6.3 Membrane materials and structures 6.3.1 Polymer structures and their influence in permeation 6.3.2 Inorganic membranes for gas separation 6.3.3 Carbon molecular sieve membranes 6.3.4 Mixed-matrix membranes 6.3.5 Results of membrane operations with different materials 6.4 Theory of transport in gas separation on membranes 6.4.1 Transport through rubbery polymers 6.4.2 Transport equations through glassy polymers 6.5 Membrane configurations and plant design for upgrading biogas 6.6 Recent developments in membrane-based CO2/CH4 separation 6.6.1 Biogas upgrading by cryogenic and hybrid cryogenic-membrane separation 6.6.2 Biogas upgrading by absorption and hybrid absorption-membrane 6.6.3 Microbial conversion of CO2 to CH4 on a membrane diffuser 6.7 Summary and outlook 6.8 Future developments References Chapter-7---Cryogenic-techniques--an-i_2021_Emerging-Technologies-and-Biolog 7 Cryogenic techniques: an innovative approach for biogas upgrading 7.1 Introduction 7.2 Cryogenic biogas upgrading 7.2.1 Cryogenic distillation 7.2.2 Cryogenic packed-bed technology 7.3 Cryogenic hybrid systems 7.3.1 Cryogenic-absorption combination process 7.3.2 Cryogenic-adsorption synergized process 7.3.3 Potential combination of cryogenic and membrane processes 7.3.4 Cryogenic-hydrate processes 7.4 Cryogenic-membrane processes 7.5 Full-scale experiences and technoeconomic studies 7.6 Comparison of documented technologies 7.7 Conclusions and future perspectives Appendix I: Conversion factor for unit transformations Appendix II: State forms for CO2 and CH4 as a function of temperature and pressure Acknowledgments References Chapter-8---Power-to-gas-fo_2021_Emerging-Technologies-and-Biological-System 8 Power-to-gas for methanation 8.1 Introduction 8.2 Electrocatalytic methanation 8.2.1 Alkaline electrolyzers 8.2.1.1 Definition and concept 8.2.1.2 Reactor configurations 8.2.1.3 Recent developments 8.2.2 Polymer electrolyte membrane electrolyzers 8.2.2.1 Design and concept 8.2.2.2 Reactor configurations 8.2.2.3 Recent developments 8.2.3 Solid oxide electrolyzers 8.2.3.1 Design and concept 8.2.3.2 Reactor configurations 8.2.3.3 Recent developments 8.2.4 Fixed-bed methanation reactors 8.2.4.1 Design and concept 8.2.4.2 Reactor configurations 8.2.4.3 Recent developments 8.2.5 Fluidized bed methanation reactors 8.2.5.1 Design and concept 8.2.5.2 Reactor configurations 8.2.5.3 Recent developments 8.2.6 Three-phase reactor 8.2.6.1 Design and concept 8.2.6.2 Reactor configurations 8.2.7 Micro(channel) reactors 8.3 Bioelectrochemical methanation 8.3.1 Direct electron transfer 8.3.2 Biocathodes 8.3.3 Reactor configurations 8.4 Challenges and future prospects References Chapter-9---Electrochemical-appro_2021_Emerging-Technologies-and-Biological- 9 Electrochemical approach for biogas upgrading 9.1 Introduction 9.2 Faradaic and energy efficiency 9.3 Electroreduction of CO2 9.3.1 Basic considerations 9.3.1.1 Solid-oxide devices 9.3.1.2 Liquid electrolyte devices 9.3.2 Reactor and process design 9.4 Electrochemical oxidation of H2S 9.4.1 Basic considerations 9.4.2 Reactor and process design 9.5 Biogas upgrading approach and its challenges 9.5.1 CO2 electroreduction 9.5.2 H2S oxidation 9.5.3 Biogas and scale-up approaches 9.6 Concluding remarks and perspectives Acknowledgments References Chapter-10---Siloxanes-removal-from-bi_2021_Emerging-Technologies-and-Biolog 10 Siloxanes removal from biogas and emerging biological techniques 10.1 Introduction 10.2 Methods for reducing the content of volatile organic silicon compounds in biogas 10.2.1 Pretreatment methods 10.2.2 Refrigeration and freezing methods 10.2.3 Adsorption methods 10.2.3.1 Adsorption into activated carbon Adsorption capacity of activated carbon Mutual displacement of volatile methylsiloxanes from activated carbon Preparation of biogas for adsorption into activated carbon Possibilities of activated carbon regeneration 10.2.3.2 Adsorption into silica gel Adsorption capacity and regeneration of silica gel 10.2.3.3 Adsorption into zeolites Adsorption capacity and regeneration of zeolites 10.2.3.4 Adsorption into alumina Adsorption capacity and regeneration of activated Al2O3 10.2.3.5 Adsorption into polymer adsorbents Adsorption capacity and regeneration of some novel polymer adsorbents 10.2.4 Absorption methods 10.2.5 Membrane techniques 10.2.6 Biological methods 10.3 Combined methods for volatile organic silicon compounds removal from biogas 10.4 Comparison of the methods for reducing the content of volatile organic silicon compounds in biogas 10.5 Conclusions and future perspective References Chapter-11---Technologies-for-removal-_2021_Emerging-Technologies-and-Biolog 11 Technologies for removal of hydrogen sulfide (H2S) from biogas 11.1 Introduction 11.2 Technologies for removal of biogas contaminants 11.3 Physicochemical removal technologies 11.3.1 Absorption process 11.3.1.1 Water scrubbing 11.3.1.2 Physical absorption by using organic solvents 11.3.2 Adsorption process 11.3.2.1 Adsorption 11.3.2.2 Adsorption onto activated carbon 11.3.2.3 Adsorption on metal oxides 11.3.2.4 Pressure swing adsorption system 11.3.3 Membrane separation 11.3.3.1 Separation types 11.3.3.2 Membrane types 11.4 Ex situ removal using sulfur-oxidizing microorganisms 11.4.1 Biological air filtration 11.4.1.1 Anoxic biological air filters 11.4.1.2 Aerobic biological air filters 11.4.1.3 Commercial applications of biological air filtration systems 11.4.2 Microalgal removal of H2S 11.5 In situ H2S removal 11.5.1 In situ microaeration 11.5.2 Dosing iron salts/oxides into the digester 11.6 Combined chemical-biological processes 11.7 Comparison of H2S removal techniques 11.8 Conclusions References Chapter-12---Biological-upgrading-of-b_2021_Emerging-Technologies-and-Biolog 12 Biological upgrading of biogas through CO2 conversion to CH4 12.1 Biogas upgrading 12.2 Hydrogen generation and utilization 12.3 Methanation 12.4 Microbial basis for biomethanation 12.4.1 Methanogens 12.4.2 Processes in anaerobic digestion 12.5 Reactor configurations 12.5.1 In situ biomethanation 12.5.2 Ex situ biomethanation 12.6 Factors controlling biomethanation 12.6.1 Mass transfer of H2 12.6.1.1 H2 partial pressure in gas phase 12.6.1.2 Interfacial area 12.6.1.3 Methanogenic activity 12.6.2 Temperature 12.6.3 Growth requirements 12.6.4 pH and CO2 12.6.5 Bacterial interaction and competition 12.7 Reactor design for biological methanation 12.7.1 Continuous stirred tank reactor 12.7.2 Trickle-bed reactors 12.8 Future perspectives and applications 12.9 Conclusions Abbreviations list References Chapter-13---Bioelectrochemical-systems-_2021_Emerging-Technologies-and-Biol 13 Bioelectrochemical systems for biogas upgrading and biomethane production 13.1 Background 13.2 Fundamentals of bioelectrochemical biogas upgrading 13.3 Methane enrichment of biogas 13.3.1 Electron transfer mechanism 13.3.2 Microbial communities in biocathode for methane enrichment 13.3.3 State-of-the-art bioelectrochemical biogas upgrading 13.4 Economical insights 13.5 Prospective and challenges 13.6 Conclusion Acknowledgments References Chapter-14---Photosynthetic-biogas-upgradin_2021_Emerging-Technologies-and-B 14 Photosynthetic biogas upgrading: an attractive biological technology for biogas upgrading 14.1 Introduction 14.2 Positive attributes of photosynthetic “microalgae” toward biogas upgradation 14.3 CO2 and H2S removal through photosynthetic-bacterial associated biogas upgradation 14.4 Microalgae-based biogas upgrading and concomitant wastewater treatment 14.5 Photobioreactor designs for biogas upgradation 14.6 Impact of different process variables in biogas upgradation 14.6.1 Light intensity 14.6.2 Media pH 14.6.3 Temperature 14.6.4 Biogas composition 14.6.5 Gas flow rate 14.7 The future prospects 14.8 Conclusion References Chapter-15---Biogas-upgrading-and-life-cycl_2021_Emerging-Technologies-and-B 15 Biogas upgrading and life cycle assessment of different biogas upgrading technologies 15.1 Introduction 15.2 Biomethanation 15.2.1 Cleaning of biogas 15.2.1.1 Removal of water 15.2.1.2 Removal of H2S 15.2.1.3 Removal of other impurities 15.2.2 Upgrading of biogas into biomethane 15.2.2.1 Absorption 15.2.2.2 Adsorption 15.2.2.3 Membrane separation 15.2.2.4 Cryogenic separation 15.3 Brief overview of life cycle assessment 15.4 Life cycle assessment of biogas upgrading technologies 15.5 Conclusions Acknowledgment References Further reading Chapter-16---The-role-of-techno-economic-implica_2021_Emerging-Technologies- 16 The role of techno-economic implications and governmental policies in accelerating the promotion of biomethane technologies 16.1 Introduction 16.2 Role of techno-economic studies in anaerobic digestion 16.2.1 Feedstocks 16.2.2 Gas purification technology 16.2.3 Biogas utilization 16.2.4 Subsidies 16.3 Successful policies in anaerobic digestion implementation 16.3.1 Policies and regulations 16.3.2 Renewable energy-related policies and regulations 16.3.2.1 Renewable energy generation targets 16.3.2.2 Greenhouse gas emission reduction targets 16.3.2.3 Rural development 16.3.3 Agriculture policies and regulations 16.3.4 Waste management policies 16.3.5 Incentives 16.3.5.1 Feed-in tariff (FIT) 16.3.5.2 Credits for carbon reduction and carbon trading 16.3.5.3 Tax exemptions and tax credits 16.3.5.4 Credits for renewable energy and renewable transportation fuel 16.3.5.5 Credits for nutrient load reduction 16.3.5.6 Renewable heat incentive 16.3.6 Policy instruments introduced in various countries as a support to AD industry growth 16.3.6.1 Germany 16.3.6.2 The United States 16.3.6.3 The United Kingdom 16.3.6.4 Italy 16.3.6.5 Sweden 16.3.6.6 China 16.3.6.7 India 16.3.6.8 Others 16.4 Decision-support system for biomethane implantation with techno-economic analysis and policies 16.5 Conclusion References Chapter-17---Large-scale-biogas-upgrading-_2021_Emerging-Technologies-and-Bi 17 Large-scale biogas upgrading plants: future prospective and technical challenges 17.1 Introduction 17.2 Biogas composition and feedstock types 17.3 Biogas upgrading for natural gas grid injection and transport fuel 17.4 State-of-the-art of large-scale biogas upgrading technologies 17.4.1 Physicochemical upgrading technologies 17.4.2 Power-to-gas technology for methanation 17.4.2.1 Catalytic/thermochemical methanation ETOGAS and Audi e-gas technology Haldor Topsøe Methane gas storage of renewable energy 17.4.2.2 Chemoautotrophic (biological) methanation Electrochaea MicrobEnergy 17.4.3 Bioelectrochemical system (Cambrian Innovation) 17.4.4 Photosynthetic biogas upgrading system 17.5 Conclusion and future perspective References Index_2021_Emerging-Technologies-and-Biological-Systems-for-Biogas-Upgrading Index