دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Varghese A., Hegde G. (ed.) سری: Emerging Materials and Technologies ISBN (شابک) : 978103211171 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 298 [299] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 52 Mb
در صورت تبدیل فایل کتاب Emerging Nanomaterials for Catalysis and Sensor Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد نوظهور برای کاتالیزور و کاربردهای حسگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی نانومواد در حال ظهور در کاتالیز و حسگرها می پردازد. بخش کاتالیز نقش نانو فوتوکاتالیستها در سنتز آلی و کاربرد مراقبتهای بهداشتی، واکنشهای اکسیداسیون و سولفوکسیداسیون، اکسیداسیون فاز مایع، تکامل هیدروژن و اصلاح محیط را پوشش میدهد. همبستگی خواص سطحی و فعالیت کاتالیزوری مواد مزوپور را برجسته می کند. بخش حسگر در مورد ساخت و توسعه حسگرهای مختلف الکتروشیمیایی، شیمیایی و زیستی بحث میکند. امکانات: کاربردهای کاتالیز و حسگر نانومواد، از جمله تکنیکهای سنتز دقیق این مواد را ترکیب میکند. روشهای طراحی، مهندسی و ساخت نانومواد را بررسی میکند. راندمان مواد، حد تشخیص آنها برای سنجش آنالیت های مختلف و سایر خواص مواد را پوشش می دهد. بحث در مورد پایداری مواد نانو در بخش صنعتی شامل مطالعات موردی برای رسیدگی به چالش های پیش روی بخش های تحقیق و توسعه است. این کتاب برای محققین و دانشجویان تحصیلات تکمیلی در رشته های مهندسی شیمی، نانوشیمی، مهندسی تصفیه آب و آزمایشگاه ها، صنایع، آزمایشگاه های تحقیقاتی در کاتالیزور و حسگرها، مهندسی محیط زیست و مهندسی فرآیند می باشد.
This book reviews emerging nanomaterials in catalysis and sensors. The catalysis section covers the role of nano-photocatalysts in organic synthesis and health care application, oxidation and sulphoxidation reactions, liquid phase oxidation, hydrogen evolution and environmental remediation. It highlights the correlation of surface properties and catalytic activity of the mesoporous materials. The sensor section discusses the fabrication and development of various electrochemical, chemical, and biosensors. Features: Combines catalysis and sensor applications of nanomaterials, including detailed synthesis techniques of these materials. Explores methods of designing, engineering, and fabricating nanomaterials. Covers material efficiency, their detection limit for sensing different analytes and other properties of the materials. Discusses sustainability of nano materials in the industrial sector. Includes case studies to address the challenges faced by research and development sectors. This book is aimed at researchers and graduate students in Chemical Engineering, Nanochemistry, Water Treatment Engineering and Labs, Industries, Research Labs in Catalysis and Sensors, Environmental Engineering, and Process Engineering.
Cover Half Title Emerging Materials and Technologies Series Emerging Nanomaterials for Catalysis and Sensor Applications Copyright Contents Editor Biographies Contributors Section I: Emerging Materials in Nanocatalysis 1. The Role of Nanomaterials in Sustainable Organic Synthesis 1.1 Nanomaterial as Catalysts 1.2 Characteristics of Nanomaterials 1.3 Properties of Nanomaterials as Catalysts 1.4 Nanocatalyst in Organic Transformations 1.5 Recent Developments in Advanced Nanocatalysts 1.6 Nanostructured Catalysts for Greener and Sustainable Organic Processes 1.7 Outlook References 2. Nanocatalysts in Oxidation and Sulfoxidation Reactions 2.1 Sulfur Redox Reactions 2.1.1 Sulfur Electrochemistry in Li–S Batteries 2.1.2 Liquid Sulfur-Redox Reaction 2.2 Molybdenum Catalyst Used for Sulfoxidation Reactions in Aqueous Medium 2.2.1 Characterization of Molybdenum Catalyst 2.3 TiO2 Catalyst for Enantioselective Sulfoxidation 2.4 Selective Oxidation of Alkylsulfides 2.5 Applications of Nanocatalyst 2.5.1 Use in Environment and Especially in Wastewater Treatment 2.5.2 Applications of Nanocatalyst in Mechanical Industries 2.5.3 Applications of Nanocatalyst in Drugs Delivery 2.5.4 Energy Harvesting Applications 2.5.5 Materials Engineering Applications 2.6 Nickel Nanocatalyst in the Enhancement of Hydrogen Oxidation Reactions 2.6.1 Ni@h- BN Nanocatalyst Characterization 2.7 Organic and Inorganic Hybrid Nanocatalyst for Oxidation Reaction 2.7.1 Characterization of Ag- HAp Catalyst 2.8 Metal Organic Frameworks as Oxidation Catalyst 2.9 Metals as Heterogeneous Catalysts for Different Oxidation Reactions 2.9.1 The Conversion of Glucose to Gluconic Acid 2.9.2 The Oxidative Conversion of Hydrogen to Hydrogen Peroxide 2.9.3 The Oxidation of Alcohols References 3. Correlation of Surface Properties and Catalytic Activity of Metal Aluminophosphates 3.1 Introduction to Alumina- Based Porous Materials 3.1.1 Aluminophosphates (AlPO) 3.2 Synthesis of Alumina-Based Materials 3.2.1 Preparation of Amorphous Mesoporous Metal Aluminophosphates 3.3 Characterization of Amorphous Mesoporous Aluminophosphates 3.3.1 Powder X-Ray Diffraction 3.3.2 X-Ray Diffraction Pattern of Aluminophosphates 3.3 Fourier Transform Infrared Spectroscopy (FTIR) 3.3.4 BET-Specific Surface Area 3.3.5 Temperature Programmed Desorption 3.3.6 X-Ray Photoelectron Spectroscopy 3.3.7 Raman Spectra 3.4 Correlation of Surface Properties On Catalytic Activity of Aluminophosphates References 4. Carbon Supported Noble Metal Nanocatalysts for Liquid Phase Oxidation Reactions 4.1 Overview of Carbon Materials as Catalyst Supports 4.1.1 Liquid Phase Oxidation of Organic Compounds On Carbon-Supported Noble Metal Catalysts 4.1.2 Platinum and Palladium Nanocatalysts 4.1.3 Ruthenium Nanocatalysts 4.1.4 Gold and Silver Nanocatalysts References 5. Metal Oxide Nanomaterials for Visible Light Photocatalysis 5.1 Introduction 5.2 Visible Light Photocatalysis 5.3 Mechanism of Photocatalysis 5.4 Various Types of Visible Light-Absorbing Photocatalysts 5.4.1 Modified Single Materials 5.4.2 Heterojunctions 5.4.3 Z-Scheme Heterojunctions 5.4.4 Carbon-Semiconductor Composites 5.4.5 Plasmonic Materials 5.4.6 Sensitized Photocatalysts 5.5 TiO2 Based Visible Light Active Metal Oxide Photocatalysts 5.5.1 TiO2 Structure, Properties and Electronic Processes 5.5.2 Advanced TiO2 Nanomaterials for Visible-Light Induced Applications 5.6 Non TiO2 Based Visible Light Photocatalysts 5.6.1 WO3 Based Photocatalysts 5.6.2 Bismuth-Based Photocatalysts 5.6.3 MoS2 Based Visible Light Active Photocatalysts 5.6.4 Ag3PO4 Based Nanocomposites 5.7 Applications of Metal Oxides for Visible Light-Induced Photocatalysis 5.7.1 Environmental Applications 5.7.2 Energy Applications 5.7.3 Synthetic Applications 5.8 Future Outlook and Conclusion References 6. Progress in Photocatalysis for Hydrogen Evolution and Environmental Remediation 6.1 Introduction 6.2 Synthesis of Photocatalysts 6.2.1 Sol-Gel Process 6.2.2 Hydrothermal Process 6.2.3 Sonochemical Method 6.2.4 Chemical Vapor Deposition (CVD) 6.2.5 Physical Vapor Deposition (PVD) 6.2.6 Electrochemical Deposition 6.3 Reforms in Photocatalysis 6.3.1 Doping of Metals Or Non-Metals 6.3.2 Loading of Cocatalysts 6.3.3 Heterojunction Structures 6.4 Application 6.4.1 Hydrogen Evolution 6.4.2 Waste-Water Treatment 6.5 Conclusions and Future Prospective References Section II: Emerging Materials in Nanosensors 7. Nanostructured Materials for Sensors Applications 7.1 Introduction: Background and Driving Forces 7.2 Synthesis of Nanostructured Materials 7.2.1 2D Layered Inorganic Nanomaterials for Sensor Applications 7.2.1.1 Transition Metal Dichalcogenides (TMDs) as Sensor Materials 7.2.1.2 Synthesis of 2D Inorganic Materials for Sensor Applications 7.2.1.3 Metal Oxides as Sensor Materials 7.2.1.4 Synthesis of Metal Oxide Materials for Sensor Applications 7.2.2 Carbon and Its Allotropy Materials for Sensor Applications 7.2.2.1 Carbon and Graphene Quantum Dots as Sensors 7.2.2.2 Synthetic Methods of CQDs and GQDs and Application as Sensor Materials 7.2.2.3 Preparation of Carbon Quantum Dots (CQD) for Sensor Applications 7.2.2.4 Preparation of Graphene Quantum Dots (GQD) for Sensor Applications 7.2.3 Conducting Polymer (CP) Materials for Sensor Applications 7.2.3.1 Synthesis of Conducting Polymers (CPs) for Sensor Applications 7.2.4 Organic-Inorganic Hybrid Nanomaterials for Sensor Applications 7.2.4.1 Perovskites as Sensors 7.2.4.2 Synthesis of Perovskites Materials for Sensor Applications 7.2.4.3 Metal Organic Frameworks (MOFs) as Sensors 7.2.4.4 Synthesis of MOFs for Sensor Applications 7.3 Sensor Device Fabrications 7.4 Sensing Mechanism 7.5 Outlook Acknowledgments References 8. Synthesis of Fluorescent Nanosensor for Biomedical Engineering 8.1 Introduction 8.2 Preparation of Fluorescent Nanosensor 8.2.1 Hydrothermal Synthesis 8.2.2 Solvothermal Method 8.2.3 Ultrasonic Irradiations 8.2.4 Microwave Irradiation 8.2.5 Precipitation and Coprecipitation 8.2.6 Polymerization 8.3 Types of Fluorescent Nanosensor 8.3.1 PH-Sensitive Nanosensor 8.3.2 Temperature-Sensitive Nanosensor 8.3.3 Protease-Sensitive Nanosensor 8.3.4 Oxygen-Sensitive Nanosensor 8.4 Applications of Fluorescent Nanosensor 8.4.1 Detection of Microorganisms 8.4.2 Detection of Metallic and Nonmetallic Ions 8.4.3 Detection of Organic Compounds 8.4.3.1 Detection of Amino Acids, Proteins and Vitamins 8.4.3.2 Detection of Drugs 8.5 Future Perspectives 8.6 Conclusion References 9. Applications of Peptide Luminescent Nanosensors 9.1 The Advent of Sensors and Nanosensors: Impact On Society 9.2 Classification of Nanosensors 9.3 Optical Nanosensors; Luminescent Nanosensors 9.4 Mechanisms of Operation of Luminescent Peptide Nanosensors 9.5 Future Perspectives of Peptide Nanosensors 9.6 Acknowledgments References 10. Graphene-Based Hybrid Nano Composites for Bio/Chemical Sensors 10.1 Introduction 10.1.1 History of Graphene and Its Derivatives 10.1.2 Graphene Oxide (GO)/Reduced Graphene Oxide (RGO) Hybrid With Metal (M)/Metal Oxide (MO) Nano Structures 10.1.3 Sensors 10.1.4 Surface Enhanced Raman Spectroscopy (SERS) Based Sensors 10.1.5 Electrochemical Sensors 10.2 Types of GO/rGO Hybrid M/MO Nanocomposites 10.2.1 GO/rGO-Au Hybrid Nanocomposites 10.2.2 GO/rGO-Ag Hybrid Nanocomposites 10.2.2.1 GO/rGO–Os Hybrid Nanocomposites 10.2.3 GO/rGO-Cu Hybrid Nanocomposites 10.2.4 GO/rGO-ZnO Hybrid Nanocomposites 10.2.5 GO/rGO-SnO2 Hybrid Nano Composites 10.2.6 GO/rGO-Fe2O3 Hybrid Nanocomposites 10.3 Summary References 11. Nanomaterial-Based Electrochemical Sensors for Vitamins and Hormones 11.1 Introduction 11.2 Nanomaterials – Principle and Conduction Properties for Electrochemical Sensing 11.3 Electrochemical Sensors for Water-Soluble Vitamins 11.4 Electrochemical Sensors for Hormone 11.5 Conclusions and Future Perspectives References 12. Economic Analysis, Environmental Impact, Future Prospects and Mechanistic Understandings of Nanosensors and Nanocatalysis 12.1 Introduction 12.2 Economic Analysis of Nanosensors and Nanocatalysts 12.3 Environmental Impact of Nanosensors and Nanocatalysts 12.4 Mechanistic Understanding 12.5 Future Outlook 12.6 Conclusion 12.7 Acknowledgment References Index