دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Li Tao (editor). Deji Akinwande (editor)
سری: Micro and Nano Technologies
ISBN (شابک) : 0128183861, 9780128183861
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 340
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد و دستگاههای دوبعدی در حال ظهور برای اینترنت اشیا: کاربردهای اطلاعات، سنجش و انرژی (فناوریهای میکرو و نانو) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد و دستگاههای دوبعدی در حال ظهور برای اینترنت اشیا: کاربردهای اطلاعات، حسگر و انرژی فناوریهای پیشرفته را در استفاده از مواد لایهای دوبعدی خلاصه میکند، انرژی و کاربردهای دستگاه سنجش را به عنوان ضروری مورد بحث قرار میدهد. راهحلهای زیرساختی و طرحهایی را بررسی میکند که دستگاههای اینترنت اشیاء را سریعتر، قابل اعتمادتر و در دسترستر برای ایجاد محصولات در بازار انبوه میسازد. این کتاب بر روی اطلاعات، انرژی و کاربردهای حسی تمرکز دارد و نشان میدهد که چگونه انواع مختلفی از مواد دوبعدی برای ایجاد نسل جدیدی از محصولات و دستگاههایی استفاده میشوند که از قابلیتهای فناوری بیسیم به روشی سازگار با محیط زیست و قابل اعتماد استفاده میکنند.
این کتاب منبع مهمی برای دانشمندان و مهندسان مواد است که در حال طراحی محصولات بیسیم جدید در بخشهای مختلف صنعت هستند.
Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications summarizes state-of-the-art technologies in applying 2D layered materials, discusses energy and sensing device applications as essential infrastructure solutions, and explores designs that will make internet-of-things devices faster, more reliable and more accessible for the creation of mass-market products. The book focuses on information, energy and sensing applications, showing how different types of 2D materials are being used to create a new generation of products and devices that harness the capabilities of wireless technology in an eco-efficient, reliable way.
This book is an important resource for both materials scientists and engineers, who are designing new wireless products in a variety of industry sectors.
Emerging 2D Materials and Devices for the Internet of Things Copyright Contents List of contributors 1 Two-dimensional materials-based nonvolatile resistive memories and radio frequency switches 1.1 Introduction to two-dimensional nonvolatile resistive memory 1.2 Two-dimensional materials preparation and memory device fabrication 1.2.1 Preparation and characterization of two-dimensional monolayers 1.2.2 Fabrication of memory devices 1.2.2.1 Crossbar 1.2.2.2 Litho-free and transfer-free 1.2.2.3 Exfoliation 1.3 Two-dimensional nonvolatile resistive memory 1.3.1 Nonvolatile resistive memory based on different device conditions 1.3.1.1 Crossbar device 1.3.1.2 Litho-free and transfer-free device (no polymer contamination) 1.3.1.3 Single crystalline device (no grain boundary) 1.3.1.4 Using different metal as electrodes 1.3.2 Memory performance 1.3.2.1 Reliability 1.3.2.2 Pulse operation 1.3.2.3 Flexibility 1.4 Switching mechanics 1.4.1 Factors influencing resistive switching 1.4.1.1 Temperature dependence 1.4.1.2 Device area dependence 1.4.1.3 Compliance current dependence 1.4.1.4 Voltage sweep rate and MoS2 layer number dependence 1.4.2 Possible switching mechanics based on ab initio simulation 1.5 MoS2 radio frequency switches 1.5.1 Introduction to radio frequency switch 1.5.2 Fabrication and measurement of MoS2 radio frequency switch 1.5.3 MoS2 radio frequency switch performance 1.6 Summary Acknowledgment References 2 Two-dimensional materials-based radio frequency wireless communication and sensing systems for Internet-of-things applica... 2.1 Introduction 2.2 Radio frequency performance of two-dimensional transistors 2.3 Frequency mixers and signal modulators based on two-dimensional transistors 2.4 Integrated wireless Internet-of-things sensors 2.5 Radio frequency energy harvesting using two-dimensional electronic devices 2.6 Conclusion References 3 Graphene electronic tattoo sensors for point-of-care personal health monitoring and human–machine interfaces 3.1 Introduction 3.2 Theoretical background 3.2.1 Elastic membrane-skin conformability 3.2.2 Electrical model of skin-conformal and skin-nonconformal dry sensors 3.3 Fabrication of graphene electronic tattoo sensors 3.4 Applications of graphene electronic tattoo sensors and effects of the thickness on performance 3.4.1 Skin temperature sensing 3.4.2 Skin hydration sensing 3.4.3 Electrocardiography 3.4.4 Electroencephalography 3.4.5 Electromyography 3.4.6 Electrooculography 3.4.7 Human–machine interface 3.5 Conclusion References 4 Transition metal dichalcogenides as ultrasensitive and high-resolution biosensing nodes 4.1 New opportunities for biosensing devices 4.2 Electronic biosensors made from transition metal dichalcogenides 4.3 Biosensors based on optical and optoelectronic properties of transition metal dichalcogenides 4.4 Biosensors based on structural properties of transition metal dichalcogenides 4.5 Final remarks References 5 Nanophotonics and optoelectronics based on two-dimensional MoS2 5.1 MoS2-based nanoplasmonics 5.1.1 Exciton–plasmon interactions in MoS2 5.1.2 Plasmonic hot-electron injection 5.1.3 Surface plasmons in highly doped MoS2 5.1.4 Nanofabrication of plasmonic-MoS2 structures 5.2 MoS2-based optoelectronics 5.2.1 MoS2-based photodetectors 5.2.2 MoS2-based solar cells 5.2.3 MoS2-based light-emitting diodes 5.2.4 MoS2-optical cavity systems for enhanced light-emitting performance 5.3 Summary References 6 Graphene-based anode materials for lithium-ion batteries 6.1 Introduction 6.2 Lithium-ion batteries and anode materials 6.2.1 Fundamentals of lithium-ion batteries 6.2.2 Challenges on anode materials 6.3 Graphene and graphene-based composites as anode materials 6.3.1 Graphene anodes 6.3.1.1 Porous graphene anodes 6.3.1.2 Doped graphene anodes 6.3.2 Graphene-based nanocomposite anodes 6.3.2.1 Graphene/insertion-type anodes 6.3.2.2 Graphene/alloy-type anodes 6.3.2.3 Graphene/conversion-type anodes 6.4 Conclusion and outlook References 7 Two-dimensional materials as photoelectrodes in water reduction devices for energy applications 7.1 Basic mechanism of solar water splitting 7.2 Design principles of photoelectrochemical cells for water splitting 7.3 Two-dimensional materials as conducting channels 7.4 Two-dimensional materials as charge mediator/separator 7.5 Two-dimensional materials as cocatalysts 7.6 Two-dimensional materials as other roles 7.7 Summary and perspectives References 8 Two-dimensional Xenes and their device concepts for future micro- and nanoelectronics and energy applications 8.1 Introduction 8.2 First-generation Xenes 8.2.1 Silicene 8.2.2 Germanene 8.2.3 Stanene 8.2.4 Plumbene 8.3 Second-generation Xenes 8.3.1 Borophene 8.3.2 Gallenene 8.3.3 Phosphorene 8.3.4 Arsenene 8.3.5 Antimonene 8.3.6 Bismuthene 8.3.7 Selenene 8.3.8 Tellurene 8.4 Perspectives and conclusion References 9 Piezoelectric one- to two-dimensional nanomaterials for vibration energy harvesting devices 9.1 Introduction 9.2 Preparation and characterization of piezoelectric 1–2D nanomaterials 9.2.1 BZT-BCT nanofilm 9.2.2 Piezoelectric nanofibers 9.3 Piezoelectric 1–2D nanomaterial for energy harvesting 9.3.1 Nanogenerator 9.3.2 Self-charging power cell 9.3.3 Strain sensor 9.3.4 Dye degradation 9.4 Conclusion Acknowledgment References 10 Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling 10.1 Introduction 10.2 Nanocomposite materials for chemical sensory devices and Internet of things 10.2.1 Composite materials based on carbon nanotube/graphene and functional building blocks 10.2.1.1 Organic polymer–functionalized carbon nanomaterials 10.2.1.2 Metal oxide–functionalized carbon nanomaterials 10.2.1.3 Metal-functionalized carbon nanomaterials 10.2.1.4 Interface between carbon nanomaterials and the functionalization layer 10.2.2 Nano-electronic-based sensory devices 10.2.2.1 Device configuration 10.2.2.2 Device performance: chemiresistor and field-effect transistor 10.2.3 Chemical sensors from single-walled carbon nanotube-based composites and their applications in breath analysis 10.2.3.1 Single-walled carbon nanotube/PAni core/shell composites for chemical sensing 10.2.3.2 Breath analysis 10.2.4 Perspectives and challenges of nano-electronic sensors in Internet of things technology 10.3 Electronic sensing and signaling for sustainable energy devices 10.3.1 Principles and methodology of nano-electronic approach for chemical signaling 10.3.2 Application of electrical transportation spectroscopy for energy device investigations 10.3.2.1 New insights on various energy conversion reactions 10.3.2.2 Monitoring of anionic chemisorption and interfacial competition with reactive intermediates in oxygen reduction re... 10.3.2.3 Application in the bioelectrochemical system 10.3.3 Benefits and challenges of energy device signaling in Internet of things References 11 Prospects and challenges in low-dimensional materials and devices for Internet of things 11.1 Flexible and wearable devices for Internet of things 11.1.1 Substrates 11.1.2 Two-dimensional materials as a functional layer 11.1.2.1 Graphene 11.1.2.2 Transition metal dichalcogenides 11.1.3 Progress and challenges 11.2 Human–machine interface devices for Internet of things 11.2.1 Internet of things and human–machine interface 11.2.2 A wearable sensor in human–machine interface system 11.2.3 Electronic skin 11.2.3.1 Pressure sensor for electronic skin 11.2.3.2 Human–machine interface enabled by triboelectric nanogenerator 11.2.3.3 Electric signal recordings for human–machine interface 11.2.3.4 Multifunctional human–machine interface sensors 11.2.4 Summary and prospective 11.3 Two-dimensional multifunctional device node for Internet of things 11.3.1 Sensor, modulator, and memory multifunction 11.3.2 Amplitude, frequency, and phase position hybrid modulation 11.3.3 Sensing, radio frequency, and energy collection simultaneously 11.3.4 Prospective and challenges 11.4 Sustainable energy devices for Internet of things 11.4.1 Fuel cell 11.4.2 Supercapacitors 11.4.3 Energy harvesting systems 11.4.3.1 Solar cells 11.4.3.2 Thermoelectric generators 11.4.4 Summary 11.5 5G/6G technology engaging with Internet of things 11.5.1 High bandwidth 11.5.2 Low-latency, real-time data communication 11.5.3 Artificial intelligence 11.5.4 Outlook Acknowledgments References Index Пустая страница