دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Valentina Emilia Balas (editor), Vijender Kumar Solanki (editor), Raghvendra Kumar (editor) سری: ISBN (شابک) : 0128195932, 9780128195932 ناشر: Academic Pr سال نشر: 2019 تعداد صفحات: 345 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ظهور رشد صنعت داروسازی با رویکرد IoT صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ظهور رشد صنعت داروسازی با رویکرد اینترنت اشیاء صنعتی از یک رویکرد نوآورانه برای کشف اینکه چگونه اینترنت اشیا (IoT) و کلان داده می توانند رویکردها را بهبود بخشند، کارایی ایجاد کنند و اکتشافات را انجام دهند، استفاده می کند. رشد سریع اینترنت اشیا بسیاری از شرکتها را در بخش تولید تشویق کرده است تا از این فناوری برای باز کردن پتانسیل آن استفاده کنند. شرکتهای تولیدکننده دارو نیز از این امر مستثنی نیستند، زیرا اینترنت اشیا پتانسیل ایجاد انقلابی در جنبههای فرآیند تولید دارو، از کشف دارو تا تولید را دارد.
این کتاب با استفاده از زبان واضح، مختصر و مطالعات موردی در دنیای واقعی، سطح سیستمها را هم از دیدگاه عوامل انسانی و هم از منظر شبکه، پایگاههای داده، حریم خصوصی و ضد جعل مورد بحث قرار میدهد. طیف گسترده ای از موضوعات ارائه شده دیدگاه های متعددی را در مورد چگونگی ادغام اینترنت اشیا در تولید دارو به خوانندگان ارائه می دهد.
Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach uses an innovative approach to explore how the Internet of Things (IoT) and big data can improve approaches, create efficiencies and make discoveries. Rapid growth of the IoT has encouraged many companies in the manufacturing sector to make use of this technology to unlock its potential. Pharmaceutical manufacturing companies are no exception to this, as IoT has the potential to revolutionize aspects of the pharmaceutical manufacturing process, from drug discovery to manufacturing.
Using clear, concise language and real world case studies, this book discusses systems level from both a human-factors point-of-view and the perspective of networking, databases, privacy and anti-spoofing. The wide variety of topics presented offers readers multiple perspectives on a how to integrate the Internet of Things into pharmaceutical manufacturing.
Cover Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach Copyright Contents List of contributors About the editors Preface 1 A neoteric swarm intelligence stationed IOT–IWD algorithm for revolutionizing pharmaceutical industry leading to digital ... 1.1 Introduction 1.2 Related work 1.3 Proposed neoteric swarm intelligence stationed IOT–IWD algorithm for ZRP optimization for digital health 1.4 Simulation results 1.5 Conclusion and discussions References Further reading 2 A survey on Internet-of-Thing applications using electroencephalogram 2.1 Introduction 2.2 Electroencephalogram acquisition techniques 2.2.1 Invasive 2.2.2 Noninvasive 2.3 Channel selection techniques 2.3.1 Filtering 2.3.2 Wrapper 2.3.3 Embedded 2.3.4 Hybrid 2.3.5 Human-based technique 2.4 Different brain signals 2.5 Preprocessing of electroencephalogram signals 2.6 Feature extraction and classification from electroencephalogram signal 2.7 Classification of electroencephalogram signals based on features 2.7.1 k-Nearest neighbor 2.7.2 Linear discriminant analysis 2.7.3 Decision tree 2.7.4 Adaptive Boosting 2.7.5 Multilayer perceptron 2.7.6 Naive Bayes 2.8 Applications of electroencephalogram-based Internet-of-Thing applications 2.8.1 Seizure detection 2.8.2 Brain injury detection 2.8.3 Object controlling 2.8.4 Mental state recognition 2.8.5 Rehabilitation and human assistance 2.8.6 Neuro-marketing studies 2.9 Conclusion References 3 A case study: impact of Internet of Things devices and pharma on the improvements of a child in autism 3.1 Introduction 3.1.1 Internet of Things devices 3.1.1.1 Internet of Things network requirements 3.1.2 Pharma in autism 3.1.2.1 Food as pharma 3.1.3 Autism 3.1.3.1 Pervasive developmental disorder or autism spectrum disorders 3.1.3.2 Autistic disorder 3.1.3.3 Asperger syndrome 3.1.3.4 Childhood disintegrative disorder or Heller’s syndrome 3.1.3.5 Rett syndrome 3.1.3.6 Difference between Asperger syndrome and autism spectrum disorder 3.1.3.7 Diagnosis and treatment in autism spectrum disorder 3.2 Parent history 3.2.1 Patient history 3.2.2 Herbal treatment 3.3 General behavior up to 2.5 years 3.4 Diagnosis 3.5 Autism spectrum disorder therapies, pharma, and Internet of Things 3.6 Assessment taken by Lahore Children Center at the age of 5.8 years 3.6.1 Introduction 3.6.2 Relevant medical and developmental history 3.6.3 Language and family background 3.6.4 Current functioning 3.6.5 Summary and recommendations 3.7 Improvements up to 8 years of age 3.8 Changes in behavior after 8 years of age and use of Internet of Things 3.9 Improvements up to 10.5 years of age 3.10 Applied behavior analysis therapy assessment report 3.11 Autism schools in Pakistan 3.12 Cost analysis of some schools with autism 3.13 Recommendations for autistic child discipline with Internet of Things and pharma 3.13.1 Recommendation of nutritional interventions in autism spectrum disorder 3.14 Conclusion References 4 Internet of Things–based pharmaceutics data analysis 4.1 Introduction 4.1.1 The era of Internet of Things 4.1.2 Intermittent connectivity 4.1.3 Connectivity technologies 4.1.4 Quirky machine-to-machine communication 4.1.5 Revolutionization of Internet of Things in pharma industry 4.1.6 Revolution of Industry 4.0 4.1.7 Big data in pharmaceutical industry 4.1.8 Linking Internet of Things with big data 4.1.9 Analysis of pharma data 4.2 Related works 4.2.1 Interoperability of Internet of Things devices 4.2.2 Pharma logistics: helping hand from Internet of Things 4.2.3 Data and its analysis—a way to optimize pharmaceutical processes 4.2.4 Big data handling of pharma data 4.2.4.1 Tools for analytics 4.2.5 Visual analytics in pharma industry 4.2.5.1 Gene expression 4.2.5.2 Target discovery 4.3 Proposed work 4.3.1 Proposed framework for Internet of Things–based pharmaceutical data analysis 4.3.1.1 Data acquisition 4.3.1.2 Feature extraction 4.3.1.3 Classification 4.4 Implementation 4.5 Results and discussion 4.6 Conclusion References Further reading 5 Reliable pharma cold chain monitoring and analytics through Internet of Things Edge 5.1 Introduction 5.1.1 Statement of the problem 5.1.2 Objectives 5.2 Cold chain logistics 5.3 Literature review 5.3.1 Edge technologies 5.3.2 Common sensors 5.4 Internet of Things edge design—conceptual framework 5.5 Implementations 5.6 High-level approach 5.6.1 Methodology—experiments and results 5.7 Role of containers in Internet of Things edge 5.8 Pharma—cold chain analytics 5.8.1 Product demand forecasting 5.8.2 Track and trace 5.8.3 Conditional monitoring and predictive maintenance of containers 5.9 Deployment considerations and issues 5.9.1 Deployment considerations 5.9.2 Known issues 5.10 Conclusion References Further reading 6 The growing role of Internet of Things in healthcare wearables 6.1 Introduction 6.2 Impact of Internet of Things–based wearables in healthcare 6.3 Taxonomy of wearables 6.4 Wearable sensors for physiological parameters measurement 6.4.1 Physical parameters 6.4.2 Biochemical parameters 6.5 Types of wearable sensors 6.5.1 Invasive sensors 6.5.2 Noninvasive wearable sensors 6.6 Working principles of wearable sensors 6.7 Challenges in the fabrication of wearable sensors 6.8 Small wearable antennas for healthcare system 6.9 Functions of wearable sensors 6.10 Wearable devices in pharmaceutical industry 6.10.1 Wireless body area network 6.10.2 Respiratory rate sensors 6.10.3 Body temperature sensor 6.10.4 Blood pressure monitoring sensor 6.10.5 Pulse oximetry sensors 6.11 Wearable devices revolutionize the entire paradigm in drug dispensing 6.11.1 Remove hurdles and offer rewards 6.11.2 Form and functions 6.11.3 Making the data relevant 6.11.4 Market trend 6.11.5 Glucose monitoring 6.12 Safety and security issues related to wearable health care devices 6.13 Wearable devices for women safety 6.14 Open challenges and future directions 6.15 Conclusion References 7 Internet of Things in pharma industry: possibilities and challenges 7.1 Introduction 7.1.1 Internet of Things 7.1.2 Applications of Internet of Things 7.2 Internet of Things road map in pharma 7.3 Internet of Things in pharma industry 7.4 Applying Internet of Things in pharma industry 7.4.1 Manufacturing 7.4.2 Monitoring of production flow 7.4.3 Controlling of environmental factors in drugs manufacturing 7.4.4 Quality control 7.4.5 Packaging optimization 7.4.6 Warehouse operations 7.4.7 Facility management 7.4.8 Supply chain 7.4.9 Inventory management 7.5 Role of Internet of Things in challenges of pharma industry 7.5.1 Plant safety and security 7.5.2 To overcome the short supply of drugs 7.5.3 Security of supply chain 7.5.4 Theft of drugs during transportation 7.6 Conclusion and future scope References Further reading 8 Internet of Things technologies for elderly health-care applications 8.1 Introduction 8.2 Elderly population distribution 8.3 Societal adaptions 8.4 Connected homes 8.5 What is Internet of Things? 8.6 Ambient assistive living systems 8.7 Requirements of activity recognition 8.8 Internet of Things–based technologies 8.8.1 Activity recognition 8.8.2 Wearable systems 8.8.3 Ready-to-use products 8.9 Existing systems 8.10 Conclusion References Further reading 9 An insight of Internet of Things applications in pharmaceutical domain 9.1 An overview of Internet of Things 9.2 Characteristics features of Internet of Things 9.3 Advantages of Internet of Things 9.4 Architectural framework of Internet of Things 9.5 Application areas of Internet of Things 9.6 Potential of Internet of Things in the pharmaceutical industry 9.7 Literature review of Internet of Things in pharmacy 9.8 Benefits of using Internet of Things in the pharmaceutical industry 9.9 Patient-centric Internet of Things 9.9.1 Patient-centric versus patient-centered information 9.10 Body area network overview 9.10.1 Challenges faced by body area network 9.11 Internet of Health Things 9.11.1 Advantages of Internet of Health Things 9.12 Analysis of medical nursing system using Internet of Things in the pharmaceutical domain 9.12.1 Discussed work 9.12.2 Identity management system 9.12.3 Environmental-sensing system 9.12.4 Biomedical system 9.12.5 Medication system 9.12.5.1 In pharmacy 9.12.5.2 In nursing home 9.12.6 Personal orientation system 9.13 Conclusion References 10 Smart pills: a complete revolutionary technology than endoscopy 10.1 Introduction 10.2 Introduction to endoscopy 10.3 Why endoscopy? 10.3.1 Investigating signs and symptoms 10.3.2 Diagnosing 10.3.3 Treating 10.4 Types of endoscopy 10.4.1 Upper Gastro-Intestinal (GI) endoscopy 10.4.1.1 Risks of upper GI endoscopy 10.4.1.2 Medications 10.4.2 Colonoscopy 10.4.2.1 Examining intestinal signs and symptoms 10.4.2.2 Test for more polyps 10.4.2.3 Risks of colonoscopy 10.4.3 Endoscopic retrograde cholangiopancreatography 10.4.3.1 Sphincterotomy 10.4.3.2 Stenting 10.4.3.3 Risks of endoscopic retrograde cholangiopancreatography 10.4.4 Bronchoscopy 10.4.4.1 Risks of bronchoscopy 10.4.5 Percutaneous Endoscopic Gastrostomy (PEG) 10.4.5.1 Techniques of PEG 10.4.5.2 Contraindications of PEG 10.4.5.3 Complications of PEG 10.4.6 Flexible sigmoidoscopy 10.4.6.1 Contraindications of flexible sigmoidoscopy 10.4.6.1.1 Investigate intestinal signs and symptoms 10.4.6.1.2 Screen for colon cancer 10.4.6.2 Preparation of flexible sigmoidoscopy 10.4.6.3 Complications of flexible sigmoidoscopy 10.4.7 Cystoscopy 10.4.7.1 Examining causes of signs and symptoms 10.4.7.2 Diagnosing bladder diseases and conditions 10.4.7.3 Treat bladder diseases and conditions 10.4.7.4 Diagnose an enlarged prostate 10.4.7.5 Preparation of cystoscopy 10.4.7.6 Complications of cystoscopy 10.4.8 Transbronchial endoscopy 10.4.8.1 Preparation of transbronchial bronchoscopy 10.4.8.2 Complications of transbronchial bronchoscopy 10.4.9 Hysteroscopy 10.4.9.1 Preparation of hysteroscopy 10.4.9.2 Advantages of hysteroscopy 10.4.9.3 Complications of hysteroscopy 10.4.10 Endoscopic ultrasound 10.4.10.1 Complications of endoscopy ultrasound 10.5 Smart pills 10.6 Purpose of WCE 10.6.1 Accuracy of WCE 10.6.2 Technology of WCE 10.6.2.1 Capsule 10.6.2.2 Data recorder belt/Smart wearable 10.6.2.3 Workstation 10.6.3 Preparation of WCE 10.6.3.1 Day of before WCE 10.6.4 Working of WCE 10.7 Conclusions References Further reading 11 BioSenHealth 2.0—a low-cost, energy-efficient Internet of Things–based blood glucose monitoring system 11.1 Introduction 11.2 Related studies 11.3 Methodology 11.3.1 Architecture 11.3.1.1 Sensor strip nodes 11.3.1.2 Wi-Fi (Module) 11.3.1.3 Smart gateway 11.3.1.4 Cloud server 11.3.2 Circuit diagram 11.4 Result and discussion 11.5 Conclusion References Index Back Cover