دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James K. Strayer
سری:
ISBN (شابک) : 1577662245, 1577664450
ناشر: Waveland Press, INc
سال نشر: 1994
تعداد صفحات: 304
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Elementary number theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه اعداد ابتدایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عناوین مورد علاقه مرتبط از انتشارات Waveland: Long، مقدمه ابتدایی بر نظریه اعداد، نسخه سوم (ISBN 9780881338362) و Vanden Eynden، نظریه اعداد ابتدایی، ویرایش دوم (ISBN 9781577664451)
Titles of related interest from Waveland Press: Long, Elementary Introduction to Number Theory, Third Edition (ISBN 9780881338362) and Vanden Eynden, Elementary Number Theory, Second Edition (ISBN 9781577664451)
Cover S Title Elementary Number Theory Copyright © 1994 by Waveland Press, Inc. Reissued 2002 by Waveland Press ISBN 978-1-57766-224-2 Preface Preface to the Student Contents Introduction 1 Divisibility and Factorization 1.1 Divisibility Exercise Set 1.1 1.2 Prime Numbers Exercise Set 1.2 1.3 Greatest Common Divisors Exercise Set 1.3 1.4 The Euclidean Algorithm Exercise Set 1.4 1.5 The Fundamental Theorem of Arithmetic Exercise Set 1.5 1.6 Concluding Remarks Student Projects 2 Congruences 2.1 Congruences Exercise Set 2.1 2.2 Linear Congruences in One Variable Exercise Set 2.2 2.3 The Chinese Remainder Theorem Exercise Set 2 .3 2.4 Wilson\'s Theorem Exercise Set 2.4 2.5 Fermat\'s Little Theorem; Pseudoprime Numbers Exercise Set 2 .5 2.6 Euler\'s Theorem Exercise Set 2.6 2.7 Concluding Remarks Student Projects 3 Arithmetic Functions 3.1 Arithmetic Functions; Multiplicativity Exerdse Set 3.1 3.2 The Euler Phi-Function Exercise Set 3.2 3.3 The Number of Positive Divisors Function Exercise Set 3.3 3.4 The Sum of Positive Divisors Function Exercise Set 3.4 3.5 Perfect Numbers Exercise Set 3.5 3.6 The Mobius Inversion Formula Exercise Set 3.6 3.7 Concluding Remarks Student Projects 4 Quadratic Residues 4.1 Quadratic Residues Exercise Set 4.1 4.2 The Legendre Symbol Exercise Set 4.2 4.3 The Law of Quadratic Reciprocity Exercise Set 4.3 4.4 Concluding Remarks Student Projects 5 Primitive Roots 5.1 The Order of an Integer; Primitive Roots Exercise Set 5.1 5.2 Primitive Roots for Prime Numbers Exercise Set 5.2 5.3 The Primitive Root Theorem Exercise Set 5.3 5.4 Index Arithmetic; nth Power Residues Exercise Set 5.4 5.5 Concluding Remarks Student Projects 6 Diophantine Equations 6.1 Linear Diophantine Equations Exercise Set 6.1 6.2 Nonlinear Diophantine Equations; a Congruence Method Exercise Set 6.2 6.3 Pythagorean Triples Exercise Set 6.3 6.4 Fermat\'s Last Theorem Exercise Set 6.4 6.5 Representation of an Integer as a Sum of Squares Exercise Set 6.5 6.6 Concluding Remarks Student Projects 7 Continued Fractions 7.1 Rational and Irrational Numbers Exercise Set 7.1 7.2 Finite Continued Fractions Exercise Set 7.2 7.3 Convergents Exercise Set 7.3 7.4 Infinite Continued Fractions Exercise Set 7.4 7.5 Eventually Periodic Continued Fractions Exercise Set 7.5 7.6 Periodic Continued Fractions Exercise Set 7.6 7.7 Concluding Remarks Student Projects 8 A Few Applications 8.1 A Recreational Application Exercise Set 8.1 8.2 Cryptography; The RSA Encryption System Exercise Set 8.2 8.3 Primality Testing Exercise Set 8.3 8.4 Pell\' s Equation Exercise Set 8 .4 8.5 Concluding Remarks Student Projects Appendices A Mathematical Induction A.1 The First Principle of Mathematical Induction A.2 The Second Principle of Mathematical Induction Exercise Set A B Equivalence Relations B.1 Relations B.2 Equivalence Relations B.3 Partitions Exercise Set B C Abstract Algebra C.1 Rings and Fields C.2 Groups Exercise Set C D The Binomial Theorem D.1 The Binomial Theorem Exercise Set D E Tables Table 1 Prime Numbers Table 2 Arithmetic Functions Table3 Primitive Roots/Prime Numbers Table 4 Continued Fractions Hints and Answers to Selected Exercises Exercise Sets 1.1, 1.2 Exercise Sets 1.3, 1.4, 1.5 Exercise. Sets 2.1, 2.2 Exercise Sets 2.3, 2.4, 2.5, 2.6 Exercise Sets 3.1, 3.2 Exercise Sets 3.3. 3.4. 3.5 Exercise Sets 3.6 Exercise Sets 4.1. 4.2 Exercise Set 4.3 Exercise Sets 5.1, 5.2, 5.3 Exercise Set 5.4 Exercise Sets 6.1, 6.2, 6.3 Exercise Sets 6.4, 6.5 Exercise Sets 7.1, 7.2 Exercise Sets 7.3, 7.4, 7.5, 7.6 Exercise Set 8.2 Exercise Sets 8.3, 8.4 Bibliography Index Back Cover