دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 11 نویسندگان: William E. Boyce, Richard C. DiPrima, Douglas B. Meade سری: ISBN (شابک) : 9780470455548, 0805364455 ناشر: سال نشر: تعداد صفحات: 622 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Elementary Differential Equations and Boundary Value Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل ابتدایی و مشکلات مقدار مرزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف از این راهنما ارائه یک مقدمه سریع در مورد نحوه استفاده از Maple است. در درجه اول Maple 12 را پوشش می دهد، اگرچه بیشتر راهنما با نسخه های قبلی Maple کار می کند. همچنین، در طول این راهنما، نکاتی را پیشنهاد میکنیم و مشکلات رایجی را که کاربران احتمالاً با آنها مواجه میشوند، تشخیص میدهیم. این باید روند یادگیری را روان تر کند. این راهنما به عنوان یک آموزش خودآموز برای یادگیری Maple طراحی شده است. تاکید ما بر این است که شما را به سرعت به سرعت بالا ببریم. این راهنما همچنین میتواند به عنوان مکمل (یا مرجع) برای دانشآموزانی که در درس ریاضی (یا علوم) نیاز به استفاده از Maple دارند، مانند حساب دیفرانسیل و انتگرال، حساب دیفرانسیل و انتگرال چند متغیره، حساب دیفرانسیل و انتگرال پیشرفته، جبر خطی، ریاضیات گسسته، مدلسازی یا آمار استفاده شود.
The purpose of this guide is to give a quick introduction on how to use Maple. It primarily covers Maple 12, although most of the guide will work with earlier versions of Maple. Also, throughout this guide, we will be suggesting tips and diagnosing common problems that users are likely to encounter. This should make the learning process smoother. This guide is designed as a self-study tutorial to learn Maple. Our emphasis is on getting you quickly up to speed. This guide can also be used as a supplement (or reference) for students taking a mathematics (or science) course that requires use of Maple, such as Calculus, Multivariable Calculus, Advanced Calculus, Linear Algebra, Discrete Mathematics, Modeling, or Statistics.
Cover Title Page Copyright Dedication The Authors Preface Brief Contents Contents CHAPTER 1: Introduction 1.1. Some Basic Mathematical Models; Direction Fields Problems 1.2. Solutions of Some Differential Equations Problems 1.3. Classification of Differential Equations Problems References CHAPTER 2: First-Order Differential Equations 2.1. Linear Differential Equations; Method of Integrating Factors Problems 2.2. Separable Differential Equations Problems 2.3. Modeling with First-Order Differential Equations Problems 2.4. Differences Between Linear and Nonlinear Differential Equations Problems 2.5 Autonomous Differential Equations and Population Dynamics Problems 2.6. Exact Differential Equations and Integrating Factors Problems 2.7. Numerical Approximations: Euler’s Method Problems 2.8. The Existence and Uniqueness Theorem Problems 2.9. First-Order Difference Equations Problems Chapter Review Problems References CHAPTER 3: Second-Order Linear Differential Equations 3.1. Homogeneous Differential Equations with Constant Coefficients Problems 3.2. Solutions of Linear Homogeneous Equations; the Wronskian Problems 3.3. Complex Roots of the Characteristic Equation Problems 3.4. Repeated Roots; Reduction of Order Problems 3.5. Nonhomogeneous Equations; Method of Undetermined Coefficients Problems 3.6. Variation of Parameters Problems 3.7. Mechanical and Electrical Vibrations Problems 3.8. Forced Periodic Vibrations Problems References CHAPTER 4: Higher-Order Linear Differential Equations 4.1. General Theory of nth Order Linear Differential Equations Problems 4.2. Homogeneous Differential Equations with Constant Coefficients Problems 4.3. The Method of Undetermined Coefficients Problems 4.4. The Method of Variation of Parameters Problems References CHAPTER 5: Series Solutions of Second-Order Linear Equations 5.1. Review of Power Series Problems 5.2. Series Solutions Near an Ordinary Point, Part I Problems 5.3. Series Solutions Near an Ordinary Point, Part II Problems 5.4. Euler Equations; Regular Singular Points Problems 5.5. Series Solutions Near a Regular Singular Point, Part I Problems 5.6. Series Solutions Near a Regular Singular Point, Part II Problems 5.7. Bessel’s Equation Problems References CHAPTER 6: The Laplace Transform 6.1. Definition of the Laplace Transform Problems 6.2. Solution of Initial Value Problems Problems 6.3. Step Functions Problems 6.4. Differential Equations with Discontinuous Forcing Functions Problems 6.5. Impulse Functions Problems 6.6. The Convolution Integral Problems References CHAPTER 7: Systems of First-Order Linear Equations 7.1. Introduction Problems 7.2. Matrices Problems 7.3. Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors Problems 7.4. Basic Theory of Systems of First-Order Linear Equations Problems 7.5. Homogeneous Linear Systems with Constant Coefficients Problems 7.6. Complex-Valued Eigenvalues Problems 7.7 Fundamental Matrices Problems 7.8. Repeated Eigenvalues Problems 7.9. Nonhomogeneous Linear Systems Problems References CHAPTER 8: Numerical Methods 8.1. The Euler or Tangent Line Method Problems 8.2. Improvements on the Euler Method Problems 8.3. The Runge-Kutta Method Problems 8.4. Multistep Methods Problems 8.5. Systems of First-Order Equations Problems 8.6. More on Errors; Stability Problems References CHAPTER 9: Nonlinear Differential Equations and Stability 9.1. The Phase Plane: Linear Systems Problems 9.2. Autonomous Systems and Stability Problems 9.3. Locally Linear Systems Problems 9.4. Competing Specie Problems 9.5. Predator - Prey Equations Problems 9.6. Liapunov’s Second Method Problems 9.7. Periodic Solutions and Limit Cycles Problems 9.8. Chaos and Strange Attractors: The Lorenz Equations Problems References CHAPTER 10: Partial Differential Equations and Fourier Series 10.1. Two-Point Boundary Value Problems Problems 10.2. Fourier Series Problems 10.3. The Fourier Convergence Theorem Problems 10.4. Even and Odd Functions Problems 10.5. Separation of Variables; Heat Conduction in a Rod Problems 10.6. Other Heat Conduction Problems Problems 10.7. The Wave Equation: Vibrations of an Elastic String Problems 10.8. Laplace’s Equation Problems A. APPENDIX B. APPENDIX References CHAPTER 11: Boundary Value Problems and Sturm-Liouville Theory 11.1. The Occurrence of Two-Point Boundary Value Problems Problems 11.2 Sturm-Liouville Boundary Value Problems Problems 11.3. Nonhomogeneous Boundary Value Problems Problems 11.4. Singular Sturm-Liouville Problems Problems 11.5. Further Remarks on the Method of Separation of Variables: A Bessel Series Expansion Problems 11.6. Series of Orthogonal Functions: Mean Convergence Problems References Answers to Problems Chapter 1 Section 1.1, page 8 Section 1.2, page 15 Section 1.3, page 22 Chapter 2 Section 2.1, page 31 Section 2.2, page 38 Section 2.3, page 47 Section 2.4, page 57 Section 2.5, page 67 Section 2.6, page 75 Section 2.7, page 82 Section 2.8, page 90 Section 2.9, page 99 Miscellaneous Problems, page 100 Chapter 3 Section 3.1, page 109 Section 3.2, page 119 Section 3.3, page 125 Section 3.4, page 132 Section 3.5, page 141 Section 3.6, page 146 Section 3.7, page 157 Section 3.8, page 167 Chapter 4 Section 4.1, page 173 Section 4.2, page 180 Section 4.3, page 184 Section 4.4, page 188 Chapter 5 Section 5.1, page 195 Section 5.2, page 204 Section 5.3, page 209 Section 5.4, page 218 Section 5.5, page 223 Section 5.6, page 229 Section 5.7, page 239 Chapter 6 Section 6.1, page 247 Section 6.2, page 255 Section 6.3, page 262 Section 6.4, page 268 Section 6.5, page 273 Section 6.6, page 279 Chapter 7 Section 7.1, page 284 Section 7.2, page 293 Section 7.3, page 303 Section 7.4, page 308 Section 7.5, page 318 Section 7.6, page 327 Section 7.7, page 336 Section 7.8, page 343 Section 7.9, page 351 Chapter 8 Section 8.1, page 361 Section 8.2, page 366 Section 8.3, page 370 Section 8.4, page 375 Section 8.5, page 378 Section 8.6, page 386 Chapter 9 Section 9.1, page 397 Section 9.2, page 406 Section 9.3, page 415 Section 9.4, page 426 Section 9.5, page 433 Section 9.7, page 452 Section 9.8, page 460 Chapter 10 Section 10.1, page 468 Section 10.2, page 476 Section 10.3, page 481 Section 10.4, page 487 Section 10.5, page 495 Section 10.6, page 502 Section 10.7, page 512 Section 10.8, page 520 Section 11.1, page 533 Section 11.2, page 543 Section 11.3, page 553 Section 11.4, page 561 Section 11.5, page 564 Section 11.6, page 571 Index