دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Ashok Vaseashta. Nimet Bölgen سری: ISBN (شابک) : 3030999572, 9783030999575 ناشر: Springer سال نشر: 2022 تعداد صفحات: 769 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Electrospun Nanofibers: Principles, Technology and Novel Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوالیاف الکتروریسی: اصول، فناوری و کاربردهای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب توسعه مواد الکتروریسی، اصول اساسی فرآیند الکتروریسی، پارامترهای کنترلی، استراتژیهای الکتروریسی، و ساختارهای نانوالیافی الکتروریسی شده را با خواص ویژه برای کاربرد در مهندسی بافت و پزشکی احیاکننده، نساجی، تصفیه آب، حسگر، و میدان های انرژی این کتاب را می توان به طور کلی به سه بخش تقسیم کرد: بخش اول شامل اصول اولیه فرآیند الکتروریسی، الزامات عمومی مواد الکتروریسی و پیشرفت در فناوری الکتروریسی، بخش دوم کاربرد مواد الکتروریسی در زمینه های مختلف و چشم اندازهای آینده را تشریح می کند، در حالی که بخش سوم شامل موارد زیر است. کاربردهایی را توصیف می کند که می توانند در تولید پیشرفته بر اساس الکتروریسی بهم پیوسته و چاپ سه بعدی استفاده شوند. الکتروریسی موفق ترین فرآیند برای تولید نانوالیاف کاربردی و غشاهای نانوالیافی با خواص شیمیایی و فیزیکی برتر است. خواص منحصر به فرد مواد الکتروریسی شده از جمله نسبت سطح به حجم بالا، انعطاف پذیری، استحکام مکانیکی بالا، تخلخل بالا، و نانوالیاف قابل تنظیم و توزیع اندازه حفره ها، آنها را به نامزدهای بالقوه در طیف وسیعی از کاربردها در حوزه های زیست پزشکی و مهندسی تبدیل می کند. الکتروریسی به منظور تولید انواع فیبر خاص با قطر و مورفولوژی قابل تنظیم، ویژگی های قابل تنظیم، داشتن الگوهای خاص و ساختارهای سه بعدی کارآمدتر و تخصصی تر می شود.
با تمرکز قوی بر روی علم و مهندسی مواد اساسی، این کتاب پوششی سیستماتیک و جامع از پیشرفتهای اخیر و دیدگاههای جدید مواد الکتروریسی شده ارائه میکند. این کتاب جامع شامل فصولی است که آخرین و کاربردهای نوظهور فناوری نانوالیاف را در زمینههای مختلف، بهویژه در زمینههایی مانند منسوجات پوشیدنی، کاربردهای زیستپزشکی، تولید و ذخیره انرژی، تصفیه آب و اصلاح محیطزیست و حسگرهایی مانند نشانگرهای زیستی در مراقبتهای بهداشتی و زیستپزشکی مورد بحث قرار میدهد. مهندسی با وجود تمام این پیشرفتها، هنوز چالشهایی وجود دارد که باید برای فناوری نانوالیاف به سوی بلوغ حرکت کرد.
This book presents the development of electrospun materials, fundamental principles of electrospinning process, controlling parameters, electrospinning strategies, and electrospun nanofibrous structures with specific properties for applications in tissue engineering and regenerative medicine, textile, water treatment, sensor, and energy fields. This book can broadly be divided into three parts: the first comprises basic principles of electrospinning process, general requirements of electrospun materials and advancement in electrospinning technology, the second part describes the applications of electrospun materials in different fields and future prospects, while the third part describes applications that can be used in advanced manufacturing based on conjoining electrospinning and 3D printing. Electrospinning is the most successful process for producing functional nanofibers and nanofibrous membranes with superior chemical and physical properties. The unique properties of electrospun materials including high surface to volume ratio, flexibility, high mechanical strength, high porosity, and adjustable nanofiber and pore size distribution make them potential candidates in a wide range of applications in biomedical and engineering areas. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types with tunable diameter and morphology, tunable characteristics, having specific patterns and 3D structures.
With a strong focus on fundamental materials science and engineering, this book provides systematic and comprehensive coverage of the recent developments and novel perspectives of electrospun materials. This comprehensive book includes chapters that discuss the latest and emerging applications of nanofiber technology in various fields, specifically in areas such as wearable textile, biomedical applications, energy generation and storage, water treatment and environmental remediation, and sensors such as biomarkers in healthcare and biomedical engineering. Despite all these advancements, there are still challenges to be addressed and overcome for nanofiber technology to move towards maturation.
Foreword Preface Contents About the Editors Symbols and Abbreviations Part I Fundamentals of Electrospinning 1 Introduction and Fundamentals of Electrospinning 1.1 Historical Background of the Electrospinning Process 1.2 Micro and Nanofibers Produced by Electrospinning 1.3 Basic Apparatus of Electrospinning and Recent Advances in Manufacturing Techniques 1.3.1 Melt Electrospinning 1.3.2 Needleless Electrospinning 1.3.3 Bubble Electrospinning 1.3.4 Coaxial Electrospinning 1.3.5 3D Electrospinning Technologies 1.4 Composite Nanofibers—Materials and Properties 1.5 Functionalized Nanofibers 1.5.1 Physical and Chemical Functionalization Methods 1.5.2 Functional Nanofibers with Desired Properties 1.6 Application Areas 1.6.1 Tissue Engineering 1.6.2 Drug Delivery 1.6.3 Textile Industry 1.6.4 Food Packaging Industry 1.6.5 Separation and Filtration Applications 1.6.6 Sensor Applications 1.6.7 Battery Materials 1.6.8 Protection Against Chemical and Biological Agents 1.6.9 Optical Cloaking 1.6.10 Water Contamination Mitigation 1.7 Future Trends and Conclusions References 2 Fabrication Methodologies of Multi-layered and Multi-functional Electrospun Structures by Co-axial and Multi-axial Electrospinning Techniques 2.1 Introduction 2.2 Electrospinning Techniques for the Fabrication of Multi-material and Hollow Fibers 2.2.1 Multi-axial Electrospinning Methods 2.2.2 Side-by-Side Electrospinning Technique 2.3 Development of Nano/Micro and Multi-material Electrospun Hollow Fiber Structures 2.3.1 Fabrication of Core/Shell Fibers 2.3.2 Hollow Fibers Produced by Multi-axial Techniques 2.3.3 Side-by-Side Oriented Nanofiber Production (Janus Fibers) 2.4 Miscellaneous Electrospun Structures by Co- and Multi-axial Electrospinning Techniques 2.5 Potential Applications and Future Outlook 2.6 Conclusions References 3 Solvent-Free Electrospinning—Application in Wound Dressing 3.1 Introduction of Solvent-Free Electrospinning 3.1.1 Melt Electrospinning 3.1.2 Supercritical CO2-Aided Electrospinning 3.1.3 Anion-Induced-Curing Electrospinning 3.1.4 UV-Curing Electrospinning 3.1.5 Thermocuring Electrospinning 3.1.6 Two-Component Electrospinning 3.2 Advantages and Challenges of Solvent-Free Electrospinning 3.2.1 High Efficient Utilization of Precursor 3.2.2 Ecofriendly Electrospinning Process 3.2.3 Challenges in Solvent-Free Electrospinning 3.3 Biomedical Applications of Solvent-Free Electrospinning 3.3.1 Tissue Engineering 3.3.2 Drug Sustained-Release Material 3.3.3 Fast Hemostasis 3.4 Conclusion and Perspective References 4 Melt Electrospinning Writing 4.1 Introduction 4.2 Melt Electrospinning Writing (MEW) 4.2.1 Polymers Used for MEW 4.2.2 Parameters and Diameter of the Melt Electrowritten Fibers 4.2.3 Challenges and Limitations 4.3 Application of Melt Electrowritten Fibers 4.3.1 Tissue Regeneration 4.3.2 Improvement of Mechanical Properties of Materials 4.3.3 Combinatory Effect of Tissue Regeneration and Improvement of Mechanical Properties of Scaffolds 4.3.4 Mathematical and Computational Modeling for Developing Melt Electrowritten Fibers 4.4 Composites of Melt Electrowritten Fibers and Other Materials 4.5 Conclusion References 5 Co-electrohydrodynamic Forming of Biomimetic Polymer Materials for Diffusion Magnetic Resonance Imaging 5.1 Introduction 5.2 Co-electrohydrodynamic Forming of Hollow Polymeric Materials 5.2.1 Co-electrospinning of Hollow Polymeric Fibres 5.2.2 Coaxial Electrospraying of Hollow Polymer Particles 5.3 Tissue Microstructure Mimicking Phantoms for Diffusion MRI 5.3.1 Brain, Heart and Tumour Microstructure 5.3.2 Co-EHD Microstructural Phantoms for Diffusion MRI 5.4 Summary References 6 Polysuccinimide and Polyaspartamide for Functional Fibers: Synthesis, Characterization, and Properties 6.1 Introduction 6.2 Synthesis of PSI Gel Fibers by Post-spinning Chemical Crosslinking 6.3 Synthesis of PSI Gel Fibers by Post-spinning Plasma Crosslinking 6.4 Synthesis of PSI Gel Fibers by Coaxial Reactive Electrospinning 6.5 Synthesis of Redox-Sensitive PSI and PASP Gel Fibers by Reactive Electrospinning 6.6 Summary References Part II Applications of Electrospun Nanofibers 7 Electrospun Fibers in Drug Delivery 7.1 Introduction 7.2 Fiber Architecture 7.3 Pharmaceutical Polymers 7.4 Small Molecule Drugs 7.4.1 Fast Dissolving Drug Delivery Systems 7.4.2 Extended Release 7.4.3 Zero-Order Release 7.4.4 Targeted Release 7.4.5 Multi-stage Release 7.5 Electrospinning of Biologicals 7.5.1 Proteins 7.5.2 Cells and Extracellular Vesicles 7.6 Translation 7.7 Conclusions References 8 Suitability of Electrospun Nanofibers for Specialized Biomedical Applications 8.1 Introduction 8.2 Wound Dressing 8.3 Drug Delivery 8.4 Vascular Grafts 8.5 Tissue Engineering 8.6 Enzyme Immobilization 8.7 Conclusıons References 9 Biopolymeric Electrospun Nanofibers for Wound Dressings in Diabetic Patients 9.1 Introduction 9.2 Diabetes Mellitus and Impaired Wound Healing 9.3 Electrospun Nanofibers 9.3.1 Natural Biopolymers 9.3.2 Synthetic Polymers 9.4 Conclusion References 10 Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both 10.1 Introduction 10.2 Electrospinning 10.2.1 Principles of Electrospinning 10.2.2 Control of the Electrospinning Process/Parameters 10.2.3 Fibrous Meshes Morphologies and Structures 10.3 Microfluidics 10.3.1 Principles of Microfluidics and Microfluidic Spinning 10.3.2 Fibrous Structures 10.4 Applications of Electrospinning and Microfluidic Spinning in the Biomedical Field 10.4.1 Tissue Engineering 10.4.2 Wound Dressing 10.4.3 Drug Delivery Systems 10.5 Hybrid Systems 10.5.1 Integration of Electrospun Nanofibrous Meshes into Microfluidic Systems 10.6 Conclusions References 11 Multifunctional Wound Dressings Based on Electrospun Nanofibers 11.1 Introduction to Electrospun Nanofibers for Wound Dressing 11.1.1 Skin Wound and Wound Healing: Basic Aspects 11.1.2 Types of Wound Dressing: Conventional and Novel Multifunctional Ones 11.1.3 Electrospinning as a Suitable Alternative for Wound Dressing 11.2 Characterization of ESNF for Wound Dressings 11.2.1 Morphology, Porosity and Surface Area 11.2.2 Fluid Handling Capacity and Oxygen Permeation 11.2.3 Mechanical Properties 11.2.4 Chemical Composition 11.2.5 Biological Characterizations 11.3 Applications of ESNF Wound Dressings 11.3.1 Synthetic Polymers Applied to ESNF Wound Dressing Design 11.3.2 Natural Polymers Applied to ESNF Wound Dressing Design 11.4 Conclusions References 12 Incorporating Poorly Soluble Drugs into Electrospun Nanofibers for Improved Solubility and Dissolution Profile 12.1 Introduction 12.2 Methods of Drug Incorporation into Electrospun Nanofibers 12.2.1 Blending 12.2.2 Surface Modification/Immobilization 12.2.3 Co-axial Electrospinning 12.2.4 Emulsion Electrospinning 12.2.5 Layer by Layer Electrospinning 12.3 Mechanism of Solubility Enhancement Using Electrospun Nanofibers 12.3.1 Nanonization 12.3.2 Porosity 12.3.3 Crystalline to Amorphous Conversion 12.3.4 Overcome Hydrophobicity 12.4 Nanofiber Complexes for Solubility Enhancement 12.5 Bioavailability Enhancement 12.6 Conclusion References 13 Electrospun Nanofibers based Electrodes and Electrolytes for Supercapacitors 13.1 Introduction 13.2 Electric Double-Layer Capacitors (EDLC) 13.2.1 Pseudocapacitors 13.2.2 Hybrid Supercapacitors 13.3 Electrospun NFs Based Electrodes 13.3.1 Carbon Nanofibers (CNFs) 13.3.2 Carbon-Composite NFs 13.3.3 Metal-Oxide NFs 13.3.4 Spinel Oxides NFs 13.3.5 Perovskites NFs 13.3.6 Metal-Oxide Metal-Oxide Composites NFs 13.4 Electrospun Polymer Membrane Electrolytes (ESPMEs) 13.4.1 PVDF Based ESPMEs 13.4.2 PVDF-HFP Based ESPMEs 13.4.3 PAN-Based ESPMEs 13.4.4 PVA Based ESPMEs 13.4.5 Other Polymers Based ESPMEs 13.5 Conclusion and Future Outlook References 14 Energy Harvesting Solutions Based on Piezoelectric Textiles Structures from Macro Nano Approach 14.1 Introduction 14.2 Materials Used for Piezo Applications 14.3 Microscale Fibers Used in Piezo Applications 14.4 Nanofibers 14.4.1 PVDF 14.4.2 Copolymers 14.4.3 PLA 14.4.4 PAN 14.4.5 Nanocomposite 14.5 Applications 14.5.1 Nanogenerators 14.5.2 Sensors 14.5.3 Energy Storage 14.6 Conclusion References 15 Morphological and Mechanical Properties of Electrospun Polyurethane Nanofibers—Air-Filtering Application 15.1 Introduction 15.2 Materials and Methods 15.2.1 Electrospinning 15.2.2 Polymers 15.2.3 Solvents 15.2.4 Polymeric Concentration 15.2.5 Conductive Materials 15.2.6 Preparation of Polymeric Solutions 15.3 Characterization 15.3.1 Solution Characterization 15.3.2 Morphology Characterization 15.3.3 Physical Characterization 15.3.4 Mechanical Properties 15.4 Results and Discussion 15.4.1 Viscosity and Conductivity of Solutions 15.4.2 Morphology of Nanofibers 15.4.3 Mechanical Properties 15.5 Conclusion References 16 Electrospun Polymeric Nanofibers: An Innovative Application for Preservation of Fruits and Vegetables 16.1 Introduction 16.2 Quality Attributes of Fruits and Vegetables 16.3 Methods to Prolong the Shelf Life of Fruits and Vegetables 16.4 Nanotechnology Applied to Food 16.5 Development of Nanofibers 16.5.1 Antimicrobial Nanofibers Applied to Food 16.5.2 Potential of Nanofibers in the Preservation of Fruits and Vegetables 16.6 Future Perspectives 16.7 Conclusions References 17 Encapsulation of Bioactive Compounds in Electrospun Nanofibers for Food Packaging 17.1 Introduction 17.2 Polymeric Nanofibers as Material for Encapsulation by the Electrospinning Process 17.3 Bioactive Compounds for Encapsulation by Electrospinning 17.3.1 Phycocyanin 17.3.2 Phenolic Compounds and Essential Oils 17.3.3 Anthocyanins 17.4 Nanotechnology and Food Safety 17.5 Electrospun Nanofibers Containing Bioactive Compounds for Application in Food Packaging 17.5.1 Active Packaging 17.5.2 Functional Bioactive Packaging 17.5.3 Intelligent Packaging 17.5.4 Edible Packaging 17.6 Conclusion and Future Trends References 18 Application of Electrospun Polyaniline (PANI) Based Composites Nanofibers for Sensing and Detection 18.1 Introduction 18.2 Electrospun Nanofibers Fabrication 18.3 Electrospun Metal Oxide Nanofibers-Based Sensor 18.4 Electrospun Polyaniline (PANI) Based Composites Nanofibers Sensor 18.4.1 Electrospun PANI/Polymer Composites Nanofibers 18.4.2 Electrospun PANI/Metal Oxide Composites Nanofibers 18.5 Conclusions References 19 Protective Facemask Made of Electrospun Fibers 19.1 Introduction 19.2 Facemasks 19.3 The Global Market of Facemask 19.4 Types of Facemasks 19.4.1 Non-medical Masks 19.4.2 Medical Face Masks 19.5 Properties of Facemasks 19.5.1 Filtration Efficiency 19.5.2 Face Fitting 19.5.3 Breathable 19.5.4 Fluid Resistance 19.5.5 Reusable 19.5.6 Audible 19.5.7 Durable 19.6 Characterization Techniques for Facemasks 19.6.1 Bacteria Filtration Efficiency In Vitro (BFE) 19.6.2 Differential Pressure Test 19.6.3 Particle Filtration Efficiency 19.6.4 Breathing Resistance 19.6.5 Splash Resistance 19.6.6 Flammability 19.6.7 Biocompatibility and Toxicological Risk Assessments 19.6.8 Additional Test for Respirators (N95) 19.7 The Effect of COVID-19 on Demand for Facemasks 19.8 Electrospun Nanofibers 19.8.1 Properties and Application of Nanofibers 19.8.2 Use of Nanofibers in Filtration Applications 19.8.3 Use of Nanofibers for Facemasks 19.9 Nanofibers as Sole Facemasks 19.9.1 Nanofibers Coatings on Facemasks 19.9.2 Nanofibers from the Synthetic Origin for Facemasks 19.9.3 Nanofibers from the Natural Origin for Facemasks 19.9.4 Composite Nanofibers for Facemasks 19.10 Properties of Nanofibers that Influence the Facemasks 19.10.1 Influence of Fiber Diameter on Filtration Efficiency 19.10.2 Influence of Fiber Morphology on Filtration Efficiency 19.10.3 Influence of Porosity on Filtration Efficiency 19.10.4 Influence of Structure on Filtration Efficiency 19.11 Bioactive/Antiviral Nanofibers for Facemasks 19.12 Conclusions and Future Perspective References Part III Advanced Manufacturing 20 Electrospinning and Three-Dimensional (3D) Printing for Biofabrication 20.1 Introduction 20.2 Electrofabrication 20.2.1 Electrofabrication Methods: Principles, Techniques and Conditions 20.2.2 Developments and Generations of Electrofabrication Methods 20.2.3 Advantages and Limitations 20.3 3D Bioprinting 20.3.1 Microextrusion 3D Bioprinting 20.3.2 Inkjet 3D Bioprinting 20.3.3 Laser-Assisted 3D Bioprinting 20.3.4 Stereolithography 3D Bioprinting 20.3.5 Electrospinning-Based 3D Printing 20.4 Combining Electrospinning and 3D Bioprinting 20.4.1 Need, Approaches and Conditions 20.4.2 Application in Tissue Engineering 20.4.3 Advantages and Limitations 20.5 Challenges and Future Directions 20.6 Conclusions References 21 Application of Hand-Held Electrospinning Devices in Medicine 21.1 Introduction 21.2 Characteristics and Advantages of Portable Electrospinning Devices 21.3 Portable Electrospinning Devices and Its In-situ Application 21.3.1 Hand-Held Electrospinning Devices and Its Applications 21.3.2 Battery-Driven Portable Electrospinning Devices and Its Applications 21.3.3 Generator-Driven Portable Electrospinning Device and Its Application 21.4 Functional Materials of Nanofibers 21.5 Conclusions and Prospects References 22 Hierarchical Integration of 3D Printing and Electrospinning of Nanofibers for Rapid Prototyping 22.1 Introduction 22.2 Overview of Processes 22.2.1 3D Printing—Overview of the Basic Process 22.2.2 Electrospinning—Overview of the Basic Process 22.3 Configurations of Hierarchal Integration 22.4 Spectrum of Potential Applications 22.4.1 Tissue Engineering 22.4.2 Wound Dressing, Physical Augmentation and Personal Protective Equipment 22.4.3 Piezoelectric Materials—Tactile Sensing, Energy Harvesting and Biomedical Application 22.4.4 Piezoelectric Devices for Structural Health Monitoring 22.5 Conclusions and Future Applications References 23 Integration of Electrospinning and 3D Printing Technology 23.1 Introduction 23.2 The Principle/Setup of Electrospinning and 3D Printing 23.2.1 The Principle/Setup of Electrospinning 23.2.2 The Principle/Setup of 3D Printing 23.3 The Integration of Electrospinning and 3D Printing 23.3.1 Near-Field Electrospinning 23.3.2 Melt Electrospinning 23.3.3 Other 3D Printed Electrospinning Technology 23.4 Materials for Electrospinning and 3D Printing 23.5 Engineering of the Materials 23.5.1 Control of In-Fiber Porosity and Geometry 23.5.2 Incorporation of Nanoparticles 23.5.3 Control of Morphology, Alignment, and Stacking 23.6 Scale-Up Production for Industrial Applications 23.6.1 Basic Research on Scale-Up Production of 3D Printed Electrospinning 23.6.2 Current Situation of Scale-Up Manufacturing Equipment for 3D Printing Electrospinning 23.7 Concluding Remarks References 24 Electrospun Nanofibers for Industrial and Energy Applications 24.1 Introduction 24.2 Electrospinning 24.3 Electrostatic Interaction Principle 24.4 Effect of Parameters on Electrospinning 24.4.1 Applied Voltage and Flow Rate 24.4.2 Needle to Collector Distance 24.4.3 Type and Materials of Collector 24.4.4 Solvents 24.4.5 Solution Viscosity and Conductivity 24.5 Functional Nanofibers 24.6 Polymer-Based Electrospun Nanofiber 24.7 Cyclodextrins (CDs) 24.8 Inclusion Complexes (ICs) 24.9 Cyclodextrin Inclusion Complexes Encapsulating Electrospun Nanofiber (CDs-ICs-P-NF) 24.10 Polymer Free Electrospun Nanofiber (CDs-ICs-NF) 24.11 Food Packaging Applications 24.12 Pharmaceutical Applications 24.13 Energy Applications 24.14 Conclusions References 25 Electrospun Nanofibers for Energy Harvesting 25.1 Introduction 25.2 Piezoelectric Nanogenerators (PNGs) 25.3 Piezo-Pyroelectric Hybrid Nanogenerators 25.4 Triboelectric Nanogenerators (TENGs) 25.5 Piezoelectric and Triboelectric Nanogenerators (PTNGs) 25.6 Conclusion References 26 Development of Micro/Nano Channels Using Electrospinning for Neural Differentiation of Cells 26.1 Introduction: Neural Differentiation of Cells 26.2 Biomedical Applications of Electrospinning (an Overview) 26.2.1 Drug Delivery Systems 26.2.2 Wound Healing 26.2.3 Tissue Engineering Scaffolds 26.3 Electrospinning in Neural Differentiation of Cells 26.3.1 Polymeric Nanofibrous Scaffolds 26.4 Biomedical Applications of Microfluidics (an Overview) 26.5 Microfluidics in Neural Differentiation of Cells 26.6 Electrospinning and Microfluidic Hybrid Systems in Neural Differentiation of Cells 26.6.1 Electrospun Nanofibers in Attachment with a Microfluidic Chip 26.6.2 Microfluidic Spinning of Nanofibrous Scaffolds 26.6.3 Electrospun Fiber Molding for Fabrication of Microfluidic Channels 26.7 Conclusions References Author Index Subject Index