دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: 1 نویسندگان: Serge Cosnier. Arkady Karyakin سری: ISBN (شابک) : 3527324143, 9783527324149 ناشر: Wiley-VCH سال نشر: 2010 تعداد صفحات: 299 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب الکتروپلیمریزاسیون: مفاهیم، مواد و کاربردها: شیمی و صنایع شیمیایی، ترکیبات با وزن مولکولی بالا
در صورت تبدیل فایل کتاب Electropolymerization: Concepts, Materials and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکتروپلیمریزاسیون: مفاهیم، مواد و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنما و مرجع آماده با ارائه پوشش گسترده، از جمله فیلم های رسانا، عایق و الکترواکتیو، به موضوعات مقدماتی و اصول و همچنین بینش های پیشرفته می پردازد. ساختاری واضح، در بخش اول کتاب، خوانندگان اصول الکتروپلیمریزاتوئین را برای انواع مهم پلیمرها، مکانیسمهای تشکیل فیلم و عاملسازی میآموزند، در حالی که بخش دوم طیف گستردهای از کاربردها را در بیوشیمی، تجزیه و تحلیل، فتوولتائیک، انرژی و محیط و همچنین محرک ها.
Providing extensive coverage, including conducting, insulating and electroactive films, this handbook and ready reference deals with introductory topics and fundamentals as well as advanced insights. Clearly structured, in the first part of the book readers learn the fundamentals of electropolymerizatoin for all important types of polymers, mechanisms of film formation and functionalization, while the second part covers a wide range of applications in biochemistry, analytics, photovoltaics, energy and the environment as well as actuators.
Electropolymerization......Page 6
Contents......Page 8
Preface......Page 14
List of Contributors......Page 16
1.1 Introduction......Page 20
1.2 Electropolymerization: Epistemological Analysis within the ICP Saga......Page 21
1.3 Electropolymerization: from Pristine Heterocyclic to Sophisticated Functional and Conjugated Architectures......Page 23
1.3.1 Electropolymerization of Pristine Aromatic Heterocycles......Page 24
1.3.2 Electropolymerization of Substituted Heterocycles......Page 26
1.3.3 Electropolymerization as a Tool to Elaborate Functional Conjugated Architectures......Page 29
1.4 Conclusion......Page 31
References......Page 32
2.1 Electropolymerization: General Aspects......Page 46
2.2 Redox Activity of Polymer Films......Page 51
2.3 Effect of Polymerization Parameters on Properties of Deposited Polymer Films......Page 57
References......Page 66
3.1 Introduction......Page 70
3.2 Experimental Arrangements......Page 72
3.3 Impedance Spectra of Polymer Films......Page 74
3.3.1 Effect of the Film Thickness and Thickness Distribution of Polymer Films......Page 75
3.3.2 Characteristic Quantities for Modified Electrodes......Page 76
3.3.3 Impedance Associated with Polymer Films in Contact with Media Allowing both Ionic and Electronic Interfacial Exchange......Page 79
3.4 Analysis of the Impedance Spectra......Page 80
3.5.1 ‘‘Homogeneous’’ or ‘‘Uniform’’ Models......Page 82
3.5.2 ‘‘Heterogeneous’’ or ‘‘Porous Layer’’ Model......Page 83
3.5.3 Theories Dealing with Two or Three Charge Carriers......Page 84
3.5.4 Brush Model......Page 85
References......Page 89
4.1 Introduction......Page 96
4.2.2 Fundamental Research......Page 97
4.2.3 New Polymerization Methods......Page 98
4.3.2 Polypyrrole Nanocomposites......Page 99
4.4 Applications......Page 102
4.4.1 Batteries and Supercapacitors......Page 103
4.4.3 Anticorrosion......Page 104
4.4.4 Miscellaneous......Page 105
References......Page 106
5.2 Electropolymerized Azines as a New Group of Electroactive Polymers......Page 112
5.2.1 Electropolymerization of Azines......Page 113
5.2.2 Hypothesis of Polyazine Structure......Page 115
5.3.1 Electrocatalysis by Polyazines......Page 117
5.3.2.1 Dehydrogenase Enzymes and Electrocatalysis of NAD+|NADH Regeneration......Page 118
5.3.2.2 Mimetics of Enzyme Catalysis......Page 119
5.3.2.3 Electropolymerized Azines as NADH Transducers......Page 120
5.3.2.4 Electroreduction of NAD+ to Enzymatically Active NADH at Poly(Neutral Red)-Modi.ed Electrodes......Page 121
5.3.2.5 Observation of the Equilibrium NAD+|NADH Potential at Poly(Neutral Red) Electrodes......Page 122
5.4.1 Attempts to Involve Glucose Oxidase in Mediator Free Bioelectrocatalysis......Page 124
5.4.2 Bioelectrocatalysis by Cellobiose Dehydrogenase on Polyazines......Page 125
References......Page 127
6.2.1 Phthalocyanines in Electron-Conducting Polymers......Page 130
6.2.2 Phthalocyanines in Matrices of Artificial Lipids......Page 132
6.2.3 Composites of Ultrathin Layers of Oppositely Charged Ions......Page 134
6.3 Electropolymerization of Phthalocyanines......Page 136
6.3.1 Electropolymerization of Phthalocyanines with Ligands Bonded to Radicals of Electron-Conducting Polymer Precursors......Page 137
6.3.2 Electropolymerization of Tetra-Amino-Substituted Phthalocyanines......Page 138
6.3.3 Electrochemical Modification of Electrodes with Nickel Tetra-Sulfonated Phthalocyanine......Page 144
6.4 Conclusion......Page 147
References......Page 149
7.1.1 What is Molecular Imprinting?......Page 152
7.2 Molecular Imprinting in Conjugated Polymers......Page 154
7.3 Solgel Imprinted Films Prepared by Electropolymerization......Page 157
7.4 Integration of MIPs with the Surface of Transducers......Page 158
7.5 Nanostructured Materials......Page 159
7.6 Other MIP-Based Sensors......Page 162
7.6.2 Capacitive Sensors......Page 163
7.6.3 Amperometric and Voltammetric/Potentiometric Sensors......Page 164
7.6.4 Miscellaneous Sensing Systems......Page 165
7.7 Conclusion......Page 166
References......Page 167
8.2 Electronic Properties of Conducting Polymers......Page 172
8.3.2 In situ Electrochemical Deposition......Page 174
8.3.3.2 Electrochemical Work Function Tuning......Page 175
8.4.2 Work Function Modulation – Modulation of Carrier Density......Page 176
8.4.4 Contact Resistance Changes (Schottky Barrier)......Page 177
8.5.1.2 CHEMFET......Page 178
8.5.1.3 Examples of Kelvin Probe and CHEMFET Gas Sensors......Page 179
8.5.2.1 Chemiresistors – Bulk Resistance Modulation......Page 182
8.5.2.2 Schottky Barrier Diodes – Contact Resistance Modulation......Page 184
8.5.2.5 Examples of Polymer Schottky Diode Gas Sensors......Page 187
References......Page 188
9.1 Introduction......Page 192
9.2 Electrochemical Signal Transduction......Page 193
9.2.1 Potentiometric Sensors......Page 194
9.2.2 Amperometric and Voltammetric Sensors......Page 198
9.2.3 Conductimetric Sensors......Page 200
9.2.4 Chemically Sensitive Transistors......Page 201
9.4 Conclusions......Page 203
References......Page 204
10.1 Introduction......Page 208
10.2 Chronological Evolution of the Concept of Biosensors Based on Electropolymerized Films: Principal Stages......Page 209
10.3 Formation of Polymer Films by Direct Electropolymerization of the Biomolecule......Page 210
10.4 Adsorption on Electrogenerated Polymers......Page 213
10.5 Mechanical Entrapment within Electropolymerized Films......Page 214
10.6 Covalent Binding at the Surface of Electropolymerized Films......Page 219
10.7 Noncovalent Binding by Affinity Interactions with the Electropolymerized Films......Page 222
10.8 Outlook......Page 224
References......Page 225
11.1 Introduction......Page 234
11.1.1 Electrochemical Techniques......Page 235
11.1.3 The Electrolyte......Page 236
11.2 Energy Conversion......Page 237
11.2.1 Polythiophenes via Electropolymerization of Simple Precursors......Page 238
11.2.2 Polythiophenes via Electropolymerization of Precursors Functionalized with Electron Accepting/Withdrawing Moieties......Page 241
11.2.3 Polythiophenes via Electropolymerization of Precursors Functionalized with Light-Harvesting Moieties......Page 244
11.3 Energy Storage......Page 246
11.3.1 Application of Inherently Conducting Polymers in Rechargeable Batteries......Page 247
11.3.2 Application of Conducting Polymers in Supercapacitors......Page 248
11.4.1 PPy......Page 249
11.4.2 PANi......Page 250
11.4.3 PTh and Derivatives......Page 251
11.5.2 Direct Electropolymerization......Page 252
11.6 Conducting Polymer Composites......Page 253
References......Page 255
12.1 Introduction......Page 260
12.2.1 Oxidation......Page 261
12.2.1.2 Prevailing Cation Interchange......Page 262
12.2.3 Complex Actual Ionic Interchanges and Polymeric Structure......Page 263
12.2.4 Giant Nonstoichiometry......Page 264
12.3.1 Electrochemomechanical Properties and Artificial Muscles......Page 265
12.3.2 Basic Molecular Motor......Page 266
12.5 Anisotropy Obtained from Isotropic Changes: Macroscopic Devices......Page 267
12.5.1 Electrochemical Transducer......Page 268
12.5.2 Efficiency......Page 270
12.5.3.1 Asymmetrical Monolayers......Page 271
12.5.3.3 Triple Layers......Page 272
12.5.4.2 Tubes and Films with Metal Support......Page 273
12.5.6 Microdevices and Microtools......Page 274
12.6 Electrochemical Characterization......Page 276
12.7 Sensing Capabilities of Artificial Muscles......Page 277
12.8 Tactile Sensitivity......Page 278
12.9 Intelligent Devices......Page 282
12.11 Advantages, Limitations, and Challenges......Page 283
12.12 Artificial Muscles as Products......Page 284
References......Page 285
Index......Page 292