دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2nd ed. 2022] نویسندگان: Jürgen Rettinger, Silvia Schwarz, Wolfgang Schwarz سری: ISBN (شابک) : 3030864812, 9783030864811 ناشر: Springer سال نشر: 2022 تعداد صفحات: 233 [225] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Electrophysiology: Basics, Methods, Modern Approaches and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکتروفیزیولوژی: مبانی، روش ها، رویکردها و کاربردهای مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی به روز شده و اصلاح شده مروری کلی بر موضوعات مربوط به الکتروفیزیولوژی سلولی ارائه می دهد - از پدیده های بیوالکتریکی که در مصر باستان شناخته شده بودند تا موضوعات رایج در مورد خطرات الکترواسموگ. بدون به خطر انداختن دقت علمی، این کار واضح و مختصر از یک سو روشهای مختلف و کاربردهای مدرن و از سوی دیگر مبانی بیوفیزیکی کانالهای یونی و پروتئینهای حامل را ارائه میدهد. تصاویر و نمودارهای متعدد و با دقت انتخاب شده مکمل متن هستند. هر فصل با یک جدول مفصل از پیامهای Take-Home گسترش مییابد. سوالات در پایان هر فصل به خوانندگان اجازه می دهد تا درک خود را آزمایش کنند. هر بخش همچنین شامل ارجاعاتی به ادبیات اصلی مرتبط برای مطالعه بیشتر است. این کتاب منبع ارزشمندی برای دانشجویان زیست شناسی، شیمی و فیزیک با علاقه خاص به بیوفیزیک ارائه می دهد.
This updated and revised textbook presents a broad overview on topics concerning cellular electrophysiology – ranging from bioelectric phenomena recognized as far back as ancient Egypt to popular topics on the dangers of electrosmog. Without sacrificing scientific precision, this clear and concise work presents on the one hand the different methods and modern applications, on the other hand the biophysical fundamentals of ion-channel and carrier proteins. Numerous and carefully selected illustrations and diagrams supplement the text. Each chapter is extended by a detailed table of Take-Home Messages. Questions at the end of each chapter allow readers to test their understanding. Each section also includes references to relevant original literature for further reading. The book offers a valuable resource for students of biology, chemistry and physics with a special interest in biophysics.
Preface Acknowledgements About This Book Important Physical Units Contents About the Authors Abbreviations Chapter 1: Introduction 1.1 Basic Background Knowledge 1.2 History of Electrophysiology Take-Home Messages References Chapter 2: Basics Theory 2.1 Electrical Characteristics of Biological Membranes 2.2 Ion Distribution at Biological Membranes 2.3 Donnan Distribution and Nernst Equation 2.3.1 Donnan Distribution 2.3.2 Nernst Equation 2.4 Goldman-Hodgkin-Katz Equation Take-Home Messages References Chapter 3: Basics: Methods 3.1 Recording Electrical Signals from Body Surface 3.2 The Example (ECG) 3.2.1 Electrophysiological Basics 3.2.2 Activation of the Heart Muscle 3.3 Recording Electrical Signals from Tissue 3.3.1 Intracardiac Electrograms 3.3.2 The Ussing Chamber 3.3.3 Recording from the Brain 3.3.4 Recording Extracellular Field Potentials with Multielectrode Arrays 3.4 Recording Electrical Signals from Single Cells 3.4.1 The Ag/AgCl Electrode 3.4.2 The Microelectrode 3.4.3 Ion-Selective Microelectrodes 3.4.3.1 Construction of Ion-Selective Microelectrodes 3.4.3.2 Theory of Ion-Selective Microelectrodes 3.4.4 The Carbon-Fibre Technique 3.4.4.1 Construction of Carbon-Fibre Microelectrodes 3.4.4.2 Theory of Carbon-Fibre Microelectrodes 3.4.4.3 Amperometric and Cyclic Voltammetric Measurements 3.4.5 Basics of Voltage Clamp 3.4.5.1 The Ideal Voltage Clamp 3.4.5.2 The Real Voltage Clamp 3.4.5.3 The Voltage Clamp with Two Electrodes 3.4.5.4 One-Electrode Voltage Clamp Used for the Patch-Clamp Technique 3.4.5.5 Performing Voltage Clamp 3.4.6 Noise in Electrophysiological Measurements 3.4.6.1 Thermal Noise 3.4.6.2 Shot Noise 3.4.6.3 Dielectric Noise 3.4.6.4 Digitisation Noise 3.4.6.5 The Sampling Theorem and Aliasing Noise 3.4.6.6 Excess Noise Take-Home Messages References Chapter 4: Application of the Voltage-Clamp Technique 4.1 Different Versions of the Voltage-Clamp Technique 4.1.1 The Classic Squid Giant Axon 4.1.2 The Vaseline- or Sucrose-Gap Voltage Clamp 4.1.3 The Two-Microelectrode Voltage Clamp 4.1.4 The One-Electrode Voltage Clamp 4.1.5 The Open-Oocyte Voltage Clamp 4.2 Analysing Current Fluctuations 4.3 Analysing Transient Charge Movements (Gating Currents) 4.4 The Patch-Clamp Technique 4.4.1 Different Versions of Patch Clamp (Patch Conformations) 4.4.2 Advantages of the Different Patch Conformations 4.4.3 The Single-Channel Current and Conductance 4.4.4 The Sniffer-Patch Method 4.5 Automated Electrophysiology 4.5.1 Automated Patch Clamp Take-Home Messages References Chapter 5: Ion-Selective Channels 5.1 General Characteristics of Ion Channels 5.1.1 Selectivity of Ion Channels 5.1.2 Discrete Movement of Ions through Pores 5.2 Specific Ion Channels 5.2.1 The Na+ Channel (A Single-Ion Pore) 5.2.2 The K+ Channel (A Multi-Ion Pore) 5.2.3 The Ca2+ Channel (A Multi-Ion Pore) 5.2.4 Anion-Selective Channels Take-Home Messages References Chapter 6: Theory of Excitability 6.1 The Hodgkin-Huxley Description of Excitation 6.1.1 Experimental Basics 6.1.2 The Hodgkin-Huxley (HH) Description of Excitability 6.1.2.1 The Hypothetical Channel 6.1.2.2 The K+ Channel 6.1.2.3 The Na+ Channel 6.1.2.4 The HH Description 6.1.3 The Action Potential 6.1.3.1 Phenomenological Description 6.1.3.2 Calculation of Propagated Action Potential. 6.2 Continuous and Saltatory Spread of Action Potentials 6.2.1 The Electrotonic Potential 6.2.2 The Continuous Spread of an Action Potential 6.2.3 The Saltatory Spread of an Action Potential 6.3 Generation and Transmission of Action Potentials 6.3.1 Generation 6.3.2 Transmission 6.4 Summary of the Different Types of Potentials 6.4.1 Surface Potential 6.5 Action Potential in Non-nerve Cells 6.5.1 Skeletal Muscle 6.5.2 Smooth Muscle 6.5.3 Heart Muscle 6.5.4 Plant Cells Take-Home Messages References Chapter 7: Carrier-Mediated Transport 7.1 General Characteristics of Carriers 7.1.1 Distinction Between Pores and Carriers 7.1.2 The Oocytes of Xenopus: A Model System 7.1.3 The Anion Exchanger 7.1.4 The Sodium Pump 7.1.4.1 Steady-State Pump Current 7.1.4.2 Transient Pump-Generated Currents 7.1.5 The Neurotransmitter Transporter GAT1 7.2 Carriers Are Like Channels with Alternating Gates Take-Home Messages References Chapter 8: Examples of Application of the Voltage-Clamp Technique 8.1 Structure-Function Relationships of Carrier Proteins 8.1.1 The Na+,K+-ATPase 8.1.2 The Na+-Dependent GABA Transporter (GAT1) 8.2 Structure-Function Relationships of Ion Channels 8.2.1 Families of Various Ion Channels 8.2.1.1 The Voltage-Gated Ion Channel (VIC) Superfamily 8.2.1.2 The Ligand-Gated Ion Channel (LIC) Family 8.2.1.3 The Chloride Channel (ClC) Family 8.2.1.4 The Gap Junction-Forming (Connexin) Family 8.2.1.5 The Epithelial Na+ Channel (ENaC) Family 8.2.1.6 Mechanosensitive Ion Channels 8.2.2 ATP-Gated Cation Channel (ACC) Family 8.2.2.1 Structure and Classification of P2X Receptors 8.2.3 Experimental Results 8.2.3.1 The P2X1 Receptor 8.2.3.2 The P2X2 Receptor 8.2.3.3 Effect of Glycosylation on P2X1 Receptor Function 8.3 Viral Ion Channels 8.3.1 The 3a Protein of SARS Coronavirus 8.3.1.1 Inhibition of 3a-Mediated Current by the Anthrachinon Emodin 8.3.1.2 Inhibition of 3a-Mediated Current by the Kaempferol Glycoside Juglanin 8.3.2 Channel Proteins of SARS Coronavirus-2 8.3.3 The Viral Protein Unit (Vpu) of HIV-1 8.3.4 The M2 (Matrix Protein 2) of Influenza a Virus 8.3.4.1 Inhibition of M2-Mediated Current by Kaempferol Triglycoside 8.4 Electrophysiology as a Tool in Chinese Medicine Research 8.4.1 Mechanisms in Acupuncture Points 8.4.1.1 Mast-Cell Degranulation 8.4.1.2 Mast-Cell Degranulation Is Initiated by Ion-Channel Activation 8.4.2 Mechanisms in Effected Sites 8.4.2.1 Co-Expression of Neurotransmitter Transporters and δ-Opioid Receptor 8.5 Electrophysiology as a Tool in Pharmacology 8.5.1 The Na+,Ca2+ Exchanger 8.5.2 Neurotransmitter Transporters 8.5.3 Ion Channels Take-Home Messages References Chapter 9: Appendix 9.1 Influence of External Electrical and Magnetic Fields on Physiological Function 9.1.1 Magnetostatic Fields 9.1.2 Electrostatic Fields 9.1.3 Electromagnetic Fields 9.1.3.1 Low-Frequency Electric Fields (50 Hz) 9.1.3.2 High Frequency Electric Fields (kHz - GHz) 9.1.3.3 Conclusion 9.2 A Laboratory Course: Two-Electrode Voltage Clamp (TEVC) 9.2.1 Motivation 9.2.2 Background 9.2.2.1 Electrical Characteristics of Biological Membranes The Membrane Potential The Membrane as an Electrical Unit Theoretical Background of Voltage Clamp The Principle of Voltage Clamp (See Sect. 3.4.5) Two-Electrode Voltage Clamp 9.2.3 Questions to Be Answered for the Course 9.2.4 Set-up and Basic Instructions 9.2.4.1 Experimental Set-up (See Fig. 9.6) 9.2.4.2 Preparation of Microelectrodes 9.2.4.3 Instructions for the Use of CellWorks Program for the Turbo TEC 9.2.4.4 Solutions 9.2.5 Experiments and Data Analysis 9.2.5.1 IV Characteristics Procedure Tasks 9.2.5.2 Hypothesis Testing - the Paired-Sample T-Test 9.2.5.3 Determination of the Membrane Capacitance Procedure Tasks References Index