دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Muhammad Nasir Khan, Syed K. Hasnain, Mohsin Jamil, Ali Imran سری: ISBN (شابک) : 8770221707, 9788770221702 ناشر: River Publishers سال نشر: 2020 تعداد صفحات: 570 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Electronic Signals and Systems: Analysis, Design and Applications (River Publishers Series in Signal, Image and Speech Processing) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیگنالها و سیستمهای الکترونیکی: تحلیل، طراحی و کاربردها (سریهای River Publishers در پردازش سیگنال، تصویر و گفتار) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The Book is intended for a course on signals & systems at the senior undergraduate level and above. The authors consider all the requirements and tools used in analysis and design of discrete time systems for filter design and signal processing.
Front Cover Electronic Signals and SystemsAnalysis, Design and Applications International Edition Contents Preface Preface to the International Edition List of Figures List of Tables List of Abbreviations 1 Signals 1.1 Introduction 1.2 CT Signals 1.2.1 Frequency-CT Sinusoid Signals 1.2.2 Periodic and Aperiodic Signals 1.3 Manipulation of CT Signals 1.3.1 Reflection/Folding/Flipping 1.3.2 Shifting (Advanced and Delayed) 1.3.3 Scaling (Time and Magnitude) 1.3.4 Rule for Reflection, Shifting and Time Scaling 1.3.5 Use of Step and Ramp Function in Signal Processing 1.3.6 Even and Odd Signals 1.4 DT Signals 1.4.1 Continuous Versus Discrete Signals 1.4.2 Concept of Frequency – DT Signals 1.4.3 Time Domain and Frequency Domain 1.5 AD and DA Conversion 1.5.1 Processing Steps for AD Conversion 1.5.1.1 Sample and hold 1.5.1.2 Quantization 1.5.1.3 Coding 1.5.2 Sampling of Analogue Signals 1.6 The Sampling Theorem 1.7 Quantization Error 1.8 Representing DT Signal 1.8.1 Graphical Representation 1.8.2 Functional Representation 1.8.3 Sequence Representation 1.8.4 Tabular Representation 1.9 Elementary DT Signals 1.9.1 Unit Impulse 1.9.2 Unit Step Signal 1.9.3 Unit Ramp Signal 1.9.4 Exponential Signal 1.9.5 Sinusoidal Signal 1.10 Simple Manipulations of DT Signal 1.10.1 Reflection/Folding/Flipping 1.10.2 Shifting (Advanced and Delayed) 1.10.3 Scaling (Time and Magnitude) 1.10.4 Addition and Multiplication 1.10.5 Even and Odd Signals 1.11 Energy and Power Signals for CT and DT Signals 1.12 Problems and Solutions 2 Differential Equations 2.1 Introduction 2.2 Determination of the Transient Response, t 2.3 Determination of the Steady-State Response, ss 2.3.1 Zero- or Constant-Driving Function 2.3.2 Ramp- or Acceleration-Driving Function 2.3.3 Exponential-Driving Function 2.3.4 Sinusoidal-Driving Function 2.4 Problems and Solutions 3 Laplace Transform 3.1 Introduction 3.2 Theorems of Laplace Transform 3.3 Differential Equations and Transfer Functions 3.4 Problems and Solutions 4 System Description 4.1 System 4.2 Properties of Continuous-time System 4.2.1 Systems with Memory 4.2.2 Invertibility 4.2.3 Causality 4.2.4 Stability 4.2.5 Time Invariance 4.2.6 Linearity 4.3 Discrete-Time Systems 4.3.1 System's Representation 4.4 Symbol Used to Represent DTS 4.4.1 An Adder 4.4.2 A Constant Multiplier 4.4.3 A Signal Multiplier 4.4.4 Unit Delay Element 4.4.5 Unit Advanced Element 4.5 Properties of DTS 4.5.1 Static Versus Dynamic Systems 4.5.2 Time Invariant Versus Time-Variant System 4.5.3 Linear Versus Non-Linear System 4.5.3.1 Linear system 4.5.3.2 Non-linear system 4.5.4 Causal vs Non-Causal System 4.5.5 Stable Versus Unstable System 4.6 Systems' Mathematical Model 4.6.1 Electrical Systems 4.6.1.1 The resistor R 4.6.1.2 The inductor L 4.6.1.3 The capacitor C 4.6.2 Mechanical Translational Systems 4.6.2.1 The mass element 4.6.2.2 The damper element 4.6.2.3 The spring element 4.6.3 Mechanical Rotational System 4.6.4 Electromechanical Systems 4.6.4.1 DC generator 4.6.4.2 Servo motor 4.7 Problems and Solutions 5 Control System Response 5.1 Convolution 5.2 Convolution Integral Formula 5.3 Time Response of First-Order Systems 5.3.1 System Step Response 5.3.2 System dc Gain 5.3.3 System Ramp Response 5.4 Time Response of Second-Order Systems 5.5 Time Response Specifications in Design 5.5.1 Time Response and Pole Locations 5.6 Frequency Response of Systems 5.6.1 First-Order Systems 5.6.2 Second-Order System 5.6.3 System dc Gain 5.7 Problems and Solutions 6 Control System's Stability 6.1 Introduction 6.2 Routh–Hurwitz Stability Criterion 6.2.1 Case I 6.2.2 Case II 6.2.3 Case III 6.3 Problems and Solutions 7 Fourier Series 7.1 Periodic Function and Fourier Synthesis 7.2 Constructing a Waveform with Sine Waves 7.3 Constructing a Waveform with Cosine Waves 7.4 Constructing a Waveform with Cosine and Sine Waves 7.5 Constructing a Waveform with Both Sine and Cosine Waves and a DC Component 7.6 Trigonometric From of the Fourier Series 7.6.1 Use of Symmetry 7.6.2 Complex Form of the Fourier Series 7.7 Discrete Time Fourier Series of Periodic Signals 7.8 Gibbs' Phenomenon 7.9 Problems and Solutions 8 Fourier Transform 8.1 Introduction 8.2 Some Properties of the FT 8.2.1 Linearity 8.2.2 Time Reversal 8.2.3 Time Scaling 8.2.4 Time Transformation 8.2.5 Duality 8.2.6 Frequency Shifting 8.2.7 Time Differentiation 8.2.8 Frequency Differentiation 8.2.9 Convolution Property 8.3 Problems and Solutions 9 Solution of Difference Equations 9.1 Constant-Coefficient Difference Equation 9.2 Solution of Difference Equation 9.2.1 Using Sequential Procedure 9.2.2 Classical Technique 9.2.2.1 The homogeneous solution of difference equation 9.2.2.2 The particular solution of difference equation 9.2.2.3 Rules for choosing particular solutions 9.3 Problems and Solutions 10 Z-Transform 10.1 Introduction 10.2 Z-Transform 10.2.1 Region of Convergence 10.2.2 Properties of RoC 10.3 Theorems and Properties of Z-Transform 10.3.1 Multiplication Property 10.3.2 Linearity Property 10.3.3 Time-Shifting Property 10.3.4 Scaling Property 10.3.5 Time Reversal Property 10.3.6 Differentiation Property 10.3.7 Convolution Property 10.3.8 Correlation Property 10.3.9 Initial Value Theorem 10.3.10 Final Value Theorem 10.3.11 Time Delay Property (One Sided Z-Transform) 10.3.12 Time Advance Property 10.4 Inverse Z-Transform (Residue Method) 10.4.1 When the Poles are Real and Non-repeated 10.4.2 When the Poles are Real and Repeated 10.4.3 When the Poles are Complex 11 Analog Filters Design 11.1 Introduction 11.2 LP Filters 11.2.1 First Order RC LPF Circuit 11.2.2 Second Order StocktickerRLC LPF Circuit 11.2.3 Second Order RC LPF Circuit 11.3 High-Pass Filters 11.4 Band Pass Filters 11.5 Band Reject Filters 11.6 Designing Higher-Order Filters 11.7 Problems Associated with Passive Filters 11.8 Filters Using Operational Amplifiers 11.9 Representing Structure of Analogue Computers 11.10 Step-By-Step Design of Analogue Filters 11.11 Butterworth Approximation Function 11.11.1 Step-By-Step Design of Butterworth Filter 11.11.2 Design Procedure for Butterworth Filter 11.11.3 Design Procedure when H() is Specified as a Mere Number 11.11.4 Design Procedure when H() is Specified in Decibels 11.12 Chebyshev Approximation 11.13 Butterworth and Chebyshev Filters' Comparison 11.14 Practice Problems 12 Future Trends 12.1 Skin Lesion Segmentation from Dermoscopic Images using Convolutional Neural Network 12.1.1 Introduction 12.1.1.1 Literature Review 12.1.1.1.1 Pre-processing techniques 12.1.1.1.2 Segmentation techniques 12.1.2 Materials and Methods 12.1.2.1 Dataset Modalities 12.1.2.2 Proposed Methodology 12.1.2.2.1 Image pre-processing 12.1.2.2.2 Model architecture 12.1.2.2.3 Network training 12.1.3 Results 12.1.3.1 Model Evaluation 12.1.4 Benchmarks 12.1.4.1 Comparison with Different Frameworks 12.1.4.2 Comparison with Top 5 Challenge Participants of Leaderboard 12.1.4.3 Evaluation of Model on the PH2 Dataset 12.1.5 Conclusions References 12.2 Photodetector based Indoor Positioning Systems Variants: New Look 12.2.1 Introduction 12.2.2 Characteristics of Led-Based IPS 12.2.2.1 Channel Model 12.2.2.2 Multiplexing Protocols 12.2.2.3 Field of View 12.2.2.4 Noise 12.2.2.5 Multipath Effect 12.2.2.6 Error 12.2.3 LED-Positioning Algorithms 12.2.3.1 Received Signal Strength 12.2.3.1.1 Trilateration 12.2.3.1.2 Fingerprinting 12.2.3.1.3 Proximity 12.2.3.2 Time of Arrival/Time Difference of Arrival 12.2.3.2.1 Trilateration 12.2.3.2.2 Multilateration 12.2.3.2.3 Angle of Arrival 12.2.3.3 Data Smoothing Filters 12.2.4 Types of Systems 12.2.5 Analysis Metrics 12.2.5.1 Accuracy 12.2.5.2 Complexity 12.2.5.3 Cost 12.2.6 Challenges and Future Concerns 12.2.7 New Look 12.2.8 Conclusion References References and Bibliography Index About the Authors Back Cover