ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Electron Paramagnetic Resonance Spectroscopy: Fundamentals

دانلود کتاب طیف سنجی تشدید مغناطیسی الکترون: مبانی

Electron Paramagnetic Resonance Spectroscopy: Fundamentals

مشخصات کتاب

Electron Paramagnetic Resonance Spectroscopy: Fundamentals

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 3030396622, 9783030396626 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 444
[433] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Electron Paramagnetic Resonance Spectroscopy: Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طیف سنجی تشدید مغناطیسی الکترون: مبانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طیف سنجی تشدید مغناطیسی الکترون: مبانی

اگرچه طیف‌سنجی تشدید پارامغناطیس الکترون (EPR) در ابتدا توسط فیزیکدانان اختراع و به کار گرفته شد، ثابت کرده است که یک تکنیک بسیار کارآمد برای مطالعه طیف گسترده‌ای از پدیده‌ها در بسیاری از زمینه‌ها مانند شیمی، بیوشیمی، زمین‌شناسی، باستان‌شناسی، پزشکی، بیوتکنولوژی و محیط‌زیست است. علوم این کتاب با اذعان به اینکه همه مطالعات به سطح یکسانی از درک این تکنیک نیاز ندارند، بنابراین یک رساله عملی ارائه می دهد که به وضوح در جهت کاربردها است، که باید برای دانشجویان و محققان سطوح و رشته های مختلف مفید باشد. در این کتاب، اصول طیف‌سنجی EPR موج پیوسته با تأکید بر تفسیر طیف‌های جمع‌آوری‌شده به‌صورت تدریجی، اما دقیق، معرفی شده‌اند. پس از هر فصل، بخشی وجود دارد که نکات مهم برای کاربردها را برجسته می کند، همراه با تمرینات حل شده در پایان کتاب. واژه نامه اصطلاحات اصلی مورد استفاده در کتاب را تعریف می کند و موضوعات خاصی که دانش آنها برای درک متن اصلی لازم نیست، در ضمیمه ها برای خوانندگان کنجکاوتر توسعه داده شده است.

توضیحاتی درمورد کتاب به خارجی

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.


فهرست مطالب

Grenoble Sciences
Preface
Contents
Fundamental constants - Unit conversions
Chapter 1 - The electron paramagnetic resonance phenomenon
	1.1 – What is a spectroscopy experiment?
		1.1.1 – Exchange of energy between matter and radiation
		1.1.2 – Spectroscopic techniques
	1.2 – Magnetic spectroscopy techniques
	1.3 – Diversity of paramagnetic centres
		1.3.1 – Electrons have two magnetic moments
		1.3.2 – Paramagnetic atoms
		1.3.3 – Paramagnetic molecules
	1.4 – Principle of electron paramagnetic resonance experiments
		1.4.1 – Reduced angular momenta
		1.4.2 – Interaction between a paramagnetic centre and a magnetic field
		1.4.3 – EPR transitions
		1.4.4 – Expression of the absorption signal
	1.5 – Basic EPR spectrometry instrumentation
		1.5.1 – A few orders of magnitude
		1.5.2 – Simplified description of an EPR spectrometer
		1.5.3 – Tuning the spectrometer
	1.6 – Points to consider in applications
		1.6.1 – Electronic and nuclear paramagnetism
		1.6.2 – Importance of paramagnetic centres
		1.6.3 – Continuous wave EPR and pulsed EPR
		1.6.4 – Some observations
	Complement 1 – Magnetic moment created by a rotating point charge
	Complement 2 – Why are B_2 and O_2 paramagnetic molecules?
	Complement 3 – How magnetic field modulation affects the signal detected
	References
	Exercises
	Answers to exercises
Chapter 2 - Hyperfine structure of a spectrum in the isotropic regime
	2.1 – The various origins of spectral features in EPR
	2.2 – Hyperfine interactions
		2.2.1 – The nuclear magnetic moment
		2.2.2 – Hyperfine interactions between unpaired electrons and nuclei
		2.2.3 – The isotropic regime
	2.3 – EPR spectrum for a centre which interacts with a single nucleus in the isotropic regime
		2.3.1 – Expression of the energy levels for the centre
		2.3.2 – EPR spectrum for S = ½ and I = ½
		2.3.3 – EPR spectrum for S = ½ and I = 1
		2.3.4 – General case
	2.4 – EPR spectrum for a centre which interacts with several nuclei in the isotropic regime
		2.4.1 – Hyperfine interactions with several equivalent nuclei
		2.4.2 – Interaction with non-equivalent nuclei
	2.5 – Important points for applications
		2.5.1 – Importance of hyperfine interactions
		2.5.2 – Free radicals
		2.5.3 – Transition ion complexes
	Complement 1 – The paramagnetic radical probes technique
	Complement 2 – “Pascal’s triangles“
	References
	Exercises
	Answers to exercises
Chapter 3 - Introduction to the formalism of the space of spin states. The Hamiltonian operator
	3.1 – Introduction
	3.2 – Space of spin states associated with an angular momentum
		3.2.1 – Construction of linear operators from J – Specific bases of E_J
		3.2.2 – The scalar product
		3.2.3 – Representation of an operator by a matrix
		3.2.4 – Eigenvectors and eigenvalues of an operator
		3.2.5 – Application to a centre characterised by J = ½
		3.2.6 – How can we use the formalism of the space of spin states associated with an angular momentum?
	3.3 – Spin states and allowed energy levels for a paramagnetic centre placed in a magnetic field
		3.3.1 – Interaction between a centre with an isotropic magnetic moment and a field B
		3.3.2 – When the magnetic moment is anisotropic
	3.4 – Transition probabilities and allowed transitions
	3.5 – Possible spin states and allowed transitions in the presence of hyperfine interaction
		3.5.1 – Determining the energy levels
		3.5.2 – Allowed transitions
	3.6 – Points to consider in applications
		3.6.1 – Why is a spin Hamiltonian used in EPR and magnetic spectroscopies?
		3.6.2 – What does the spin Hamiltonian do?
		3.6.3 – Looking back to the procedure described in chapters 1 and 2
	Complement 1 – Diagonalisation of H_zeeman  in any basis
	Complement 2 – The principle of perturbation theory
	References
	Exercises
	Answers to exercises
Chapter 4 - How anisotropy of the g and A matrices affects spectrum shape for radicals and transition ion complexes
	4.1 – Introduction
	4.2 – The g matrix
		4.2.1 – How the molecule’s symmetry properties affect the g matrix
		4.2.2 – The principal values of the g matrix
	4.3 – Shape of the spectrum produced by an ensemble of paramagnetic centres in the absence of hyperfine interaction
		4.3.1 – Variation in gʹ values with the direction of B
		4.3.2 – Shape of the EPR spectrum depending on the nature of the sample
		4.3.3 – Notes on the spectra produced by polycrystalline powders or frozen solutions
	4.4 – How anisotropic hyperfine interaction affects the shape of the EPR spectrum
		4.4.1 – The hyperfine matrix A
		4.4.2 – Expression of the resonance field in the presence of anisotropic hyperfine interaction
		4.4.3 – Effect of g and A matrix anisotropy on the shape of the powder
	4.5 – How molecular movements affect the spectrum: isotropic and very slow motion regimes
		4.5.1 – A hypothetical experiment
		4.5.2 – Effects of rotational Brownian motion of paramagnetic molecules
	4.6 – Points to consider in applications
		4.6.1 – Spectrum for a single crystal
		4.6.2 – Powder spectrum for centres of spin ½
		4.6.3 – Spectra for transition ion complexes
		4.6.4 – Spectra for free radicals
		4.6.5 – The EPR spectrum contains additional information
	Complement 1 – Splitting of the energy levels for the electrons in an octahedral complex
	Complement 2 – Possible values of gʹ when the g matrix is rhombic
	Complement 3 – Expression for the density of resonance lines for a centre with axial symmetry
	Complement 4 – Expression giving the energy levels for any direction of B when the g and A matrices are anisotropic
	Complement 5 – An example of a study of a single crystal: identification of the site of Ti^3+ fluorescence in LaMgAl_11O_19
	References
	Exercises
	Answers to exercises
Chapter 5 - Spectrum intensity, saturation, spin-lattice relaxation
	5.1 – Introduction
	5.2 – Spectrum intensity at thermal equilibrium
		5.2.1 – Absorption signal and intensity of a resonance line
		5.2.2 – Expressions for the absorption signal and the intensity of the spectrum for a powder or a frozen solution
		5.2.3 – Intensity of the spectrum produced by a single crystal
		5.2.4 – Intensity of the resonance lines and of the spectrum in the presence of hyperfine interactions
	5.3 – Signal saturation 
		5.3.1 – Saturation of an EPR transition
		5.3.2 – Expression for the absorption signal in the saturated regime
		5.3.3 – Significance of the saturation phenomenon
	5.4 – Spin-lattice relaxation
		5.4.1 – The various spin-lattice relaxation processes
		5.4.2 – How can the spin-lattice relaxation time T_1 be measured?
		5.4.3 – Relaxation phenomena and EPR spectroscopy in practice
	5.5 – Points to consider in applications
		5.5.1 – Intensity of the resonance lines and the spectrum
		5.5.2 – Use of spin-lattice relaxation
	Complement 1 – Fermi’s golden rule
	Complement 2 – Expression of the intensity factor for an axially symmetric centre of spin ½
	Complement 3 – Homogeneous and inhomogeneous lines
	References
	Exercises
	Answers to exercises
Chapter 6 - The zero-field splitting term. EPR spectrum for paramagnetic centres of spin greater than 1/2
	6.1 – Introduction
	6.2 – The zero-field splitting term
		6.2.1 – The D matrix
		6.2.2 – The D and E parameters
	6.3 – Definition and general characteristics of “high-field” and “low-field” situations
		6.3.1 – The energy levels for a centre with axial symmetry for the canonical directions of the magnetic field
		6.3.2 – “High-field” and “low-field” situations
	6.4 – General properties of the spectrum in the high-field situation
		6.4.1 – Energy levels and allowed transitions
		6.4.2 – Intensity of the resonance lines and the spectrum
	6.5 – Shape of the powder spectrum in the high-field situation
		6.5.1 – Expression for the resonance field in axial symmetry
		6.5.2 – Shape of the spectrum in axial symmetry
		6.5.3 – The“half-field” line for S = 1
		6.5.4 – Shape of the spectrum in “rhombic” symmetry
	6.6 – EPR spectrum for complexes of half-integer spin in the low-field situation. Kramers doublet
		6.6.1 – Case of a complex with axial symmetry
		6.6.2 – Generalisation to a complex of any geometry
	6.7 – EPR spectrum for integer-spin complexes in the low-field situation
	6.8 – Points to consider in applications
		6.8.1 – Organic molecules in a triplet state
		6.8.2 – Transition ion complexes in the high-field situation
		6.8.3 – Transition ion complexes in the low-field situation
		6.8.4 – Spin-lattice relaxation for centres of spin greater than ½
	Complement 1 – Intensity of the resonance line at high temperature in the high-field limit
	Complement 2 – Shape of the low-field spectrum for a centre of spin S = 1
	References
	Exercises
	Answers to exercises
Chapter 7 - Effects of dipolar and exchange interactions on the EPR spectrum. Biradicals and polynuclear complexes
	7.1 – Introduction
	7.2 – Origin and description of intercentre interactions
		7.2.1 – The true nature of exchange interaction
		7.2.2 – Phenomenological description of exchange interaction
		7.2.3 – “Anisotropic components” of exchange interaction
		7.2.4 – Magnetic dipolar interaction
	7.3 – Effects of weak intercentre interactions on the spectrum
		7.3.1 – Effects of the dipolar interactions
		7.3.2 – Effects of the exchange interaction
		7.3.3 – General case
	7.4 – Effects of strong exchange interaction on the spectrum Biradicals and polynuclear complexes
		7.4.1 – Introduction
		7.4.2 – Construction of equivalent Hamiltonians for a pair of paramagnetic centres
		7.4.3 – Equivalent Hamiltonians and EPR spectra for a few typical pairs
	7.5 – How intercentre interactions affect the intensity of the spectrum and the relaxation properties
		7.5.1 – EPR spectrum intensity
		7.5.2 – Relaxation properties
	7.6 – Points to consider in applications
		7.6.1 – How weak intercentre interactions affect the spectra
		7.6.2 – How strong exchange interaction affects the spectrum
		7.6.3 – Dynamic effects of intercentre interactions
	Complement 1 – Equivalent Hamiltonian for a trinuclear complex
	References
	Exercises
	Answers to exercises
Chapter 8 - EPR spectrum for complexes of rare earth and actinide ions
	8.1 – Rare earth ions
		8.1.1 – Magnetic moment of free rare earth ions
		8.1.2 – Hyperfine interaction with the nucleus
	8.2 – Complexes of rare earth ions: effect of interaction with ligands
		8.2.1 – Expression describing the interaction of electrons in the 4f subshell with ligands
		8.2.2 – Effects of interaction with ligands on the ground multiplet
	8.3 – The EPR spectrum for complexes of rare earth ions with half-integer J values
		8.3.1 – Introduction
		8.3.2 – Expression for the effective parameters
		8.3.3 – The case of cations in an S state
		8.3.4 – Application: analysing the data obtained for ethyl sulfates
		8.3.5 – Spin-lattice relaxation for complexes with half-integer spin
	8.4 – The EPR spectrum for complexes of rare earth ions with integer J values
		8.4.1 – Intradoublet transitions
		8.4.2 – Transitions between singlets
	8.5 – Actinide complexes
		8.5.1 – Introduction
		8.5.2 – Comparison of spectra for complexes of trivalent rare earth and actinide cations
		8.5.3 – Complexes of high valence actinides: example of cations with a 5f^1 configuration
	8.6 – Points to consider in applications
		8.6.1 – Comparison of the EPR characteristics of transition ion and rare earth ion complexes with a half-integer spin.
		8.6.2 – Interpreting spectra for rare earth complexes
		8.6.3 – Actinide complexes
	Complement 1 – Rare earth elements and actinides: etymological considerations
	References
	Exercises
	Answers to exercises
Chapter 9 - How instrumental parameters affect the shape and intensity of the spectrum. Introduction to simulation methods
	9.1 – Introduction
	9.2 – How field sweep and field modulation affect the shape of the spectrum
		9.2.1 – Effects of modulation at the level of the sample
		9.2.2 – Effects of magnetic field modulation and sweep at the level of the detection chain
	9.3 – How the power and frequency of the radiation affect the spectrum. The temperature parameter
		9.3.1 – Effect of the power and frequency of the radiation
		9.3.2 – Temperature-related effects
		9.3.3 – Case study: seeking the origin of line splitting in an EPR spectrum
	9.4 – Simulating spectrum saturation
		9.4.1 – Simulating saturation of a homogeneous Lorentzian line
		9.4.2 – Simulating saturation of an inhomogeneous line
		9.4.3 – Simulating saturation of a powder spectrum
	9.5 – Introduction to numerical simulation of the EPR spectrum
		9.5.1 – Why simulate a spectrum?
		9.5.2 – How can the spectrum be numerically calculated?
		9.5.3 – The linewidth problem
	9.6 – Points to consider in applications
		9.6.1 – How should the modulation and sweep parameters be selected?
		9.6.2 – How can a saturation curve be simulated?
		9.6.3 – How can an EPR spectrum be simulated?
	Complement 1 – Some properties of the convolution product
	Complement 2 – Quantitative analysis of the saturation curve for an inhomogeneous line
	Complement 3 – Quantitative study of relaxation broadening
	Complement 4 – Using standard samples in EPR spectroscopy
	Complement 5 – Numerical simulation software
	References
	Exercises
	Answers to exercices
Appendix 1 - Expression of the magnetic moment of a free atom or ion
	First step: electrostatic interactions to which electrons are subjected
		1 – Microstates
		2 – (L, S ) terms
	Second step: magnetic interactions to which electrons are subjected
		1 – Multiplets
		2 – Expression for the magnetic moment
Appendix 2 - Expression of g and A matrices given by ligand field theory for a transition ion complex
	1 – Electrostatic interactions in free ions
	2 – Electrostatic interactions with ligands
	3 – Magnetic interactions
		3.1 – Effects of spin-orbit coupling and interaction with a magnetic field
		3.2 – Effects of hyperfine interactions
		3.3 – The case of complexes of cations in an S state
Appendix 3 - Dipolar interactions between a nuclear magnetic moment and electron spin magnetic moments
	1 – The dipolar matrix T
		Case where the φ(r) orbital is spherically symmetric relative to the nucleus
	2 – Principal axes and principal values of the T matrix
		2.1 – φ(r) is an atomic orbital centred at O
		2.2 – φ(r) is centred at a point C which is remote from the nucleus
	3 – Case with several unpaired electrons
Appendix 4 - Some properties of angular momentum operators. Spin coupling coefficients and equivalent operators. Application to Landé’s formula and to dipolar hyperfine interactions.
	1 – Definition of coupled bases and spin coupling coefficients
		1.1 – Product bases and coupled bases
		1.2 – Construction of the matrices representing operators defined from J1 and J2 in the coupled basis
		1.3 – Spin coupling coefficients
		1.4 – Application to the energy of multiplets. Demonstration of the Landé formula
	2 – Calculation of the dipolar components of the hyperfineinteraction within an (L, S) term
Appendix 5 - The notion of spin density
	1 – Definition
	2 – Spin density in a mononuclear complex
	3 – Spin density in a dinuclear complex
Appendix 6 - Example of calculation of the spin-lattice  relaxation time T_1: the direct process
Appendix 7 - Matrix elements of operators defined from components of an angular momentum
Glossary
Index




نظرات کاربران