دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Chang Q Sun
سری:
ISBN (شابک) : 9811531757, 9789811531750
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 517
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Electron and Phonon Spectrometrics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طیف سنجی الکترون و فونون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین پیشرفتها و روندهای آینده در طیفسنجی الکترون و فونون را ارائه میکند، با تمرکز بر تکنیکهای ترکیبی با استفاده از انتشار الکترون، پراش الکترون، و طیفسنجی جذب و انعکاس فونون از یک ماده تحت اختلالات مختلف برای به دست آوردن اطلاعات جدید در مورد پیوند-الکترون- دینامیک فونون این کتاب با بحث در مورد اصول همبستگی ترتیب-طول-قدرت پیوند (BOLS)، قطبش الکترون غیر پیوندی (NEP)، میانگین پیوند محلی (LBA)، و دینامیک نوسان شبکه چند میدانی برای سیستمهای تحت اغتشاش، موضوعاتی مانند فوتوالکترون دیفرانسیل/ طیف سنجی فونون (DPS)، که انتقال طول، انرژی، سفتی و کسر پیوندها را بر اساس شرایط شیمیایی یا فیزیکی تقطیر می کند. و عملکرد مشتق شده الکترونها در باندهای مختلف از نظر به دام افتادن کوانتومی و پلاریزاسیون.
این کتاب برای محققان، دانشمندان و مهندسان در زمینههای شیمی، فیزیک، علوم سطح و رابط، و علم و مهندسی مواد که به طیفسنجی الکترونی و فونونی علاقهمند هستند، جذاب است. p>
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization.
This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
Preface About This Book Contents About the Author Nomenclature Part I Electron Emission: Quantum Entrapment and Polarization 1 Introduction 1.1 Overview 1.1.1 Coordination Bonds and Energetic Electrons 1.1.2 Challenges Faced by Existing Probing Technologies 1.1.3 Known Mechanisms for Binding Energy Shift 1.2 Motivation and Objectives 1.3 Scope References 2 Theory: Bond-Electron-Energy Correlation 2.1 Atomic Coordination Classification 2.2 Core Band Energy Dispersion 2.3 BOLS-NEP-LBA Notion 2.3.1 Local Hamiltonian Perturbation 2.3.2 BOLS-NEP Notion for the Undercoordinated Atoms 2.3.3 Hetero-coordination: Entrapment or Polarization 2.3.4 Generalization of the Irregular-Coordination Effect 2.4 Valence Band and Nonbonding States 2.4.1 Complexity of the Valence DOS 2.4.2 Tetrahedral-Bonding Mediated Valence DOS 2.4.3 Impact of Nonbonding States 2.5 Numerical Strategies: Formulation and Quantification 2.5.1 Irregular-Coordination Effect 2.5.2 Local Energy Density and Atomic Cohesive Energy 2.6 Summary References 3 Probing Methods: STM/S, PES, APECS, XAS, ZPS 3.1 Energy Band Structure and Electronic Dynamics 3.2 STM/S: Nonbonding and Anti-bonding States 3.3 PES and AES: Valence- and Core-Band Shift 3.3.1 General Description 3.3.2 PES and AES 3.4 APECS/XAS: Dual Energy-Level Shifts 3.4.1 AES: Auger Parameter 3.4.2 APECS: Dual-Level Shifts 3.4.3 Extended Wagner Plots: Screening and Recharging 3.4.4 XAS/XES: Dual-Level Resultant Shift 3.5 ZPS: Atomic CN-Resolved Bond Relaxation 3.5.1 Experimental and Analytical Procedures 3.5.2 Quantitative Information 3.6 Summary References 4 Solid and Liquid Skins 4.1 XPS Derivatives 4.2 BOLS-TB Formulation 4.3 Registry and Sublayer-Order Resolution 4.3.1 Fcc-Structured Al, Ag, Au, Ir, Rh, and Pd 4.3.2 Bcc-Structured W, Mo and Ta 4.3.3 Diamond-Structured Si and Ge 4.3.4 The hcp-Structured Be, Re, and Ru 4.4 Local Binding Energy Density and Atomic Cohesive Energy 4.5 Summary References 5 Adatoms, Defects, and Kink Edges 5.1 Observations 5.1.1 XPS Detection 5.1.2 STM Observation 5.2 ZPS of Pt and Rh Adatoms: Catalytic Nature 5.3 ZPS of Rh, W, and Re Kink Edges 5.3.1 Atomic Arrangement at Edges 5.3.2 Rh(110) and (111) Vicinal Edges 5.3.3 W(110) Vicinal Edges 5.3.4 Re(0001) and (12bar31) Kink Edges 5.3.5 O-Re (12bar31) Kink Edge and Chemisorbed States 5.4 Summary References 6 Atomic Chains, Clusters, and Nanocrystals 6.1 Observations 6.2 BOLS-TB Formulation 6.3 Gold 6.3.1 STM/S-DFT: End and Edge Polarization 6.3.2 PES: The 4f and the 5d Bands 6.3.3 BOLS-TB Quantification 6.4 Silver 6.4.1 STM/S-DFT: Adatom Polarization 6.4.2 APECS: 3d and 5s Band Cooperative Shift 6.4.3 BOLS-TB Formulation and Derivatives 6.5 Copper 6.5.1 STM/S-PES-DFT: Entrapment and Polarization 6.5.2 APECS: Interface 2p and 3d Energy Shift 6.5.3 BOLS-TB Formulation and Derivatives 6.6 Nickel 6.6.1 NEXAFS-XPS: Shell-Resolved Entrapment 6.6.2 APECS: 2p and 3d Band Cooperative Shift 6.6.3 BOLS-TB-ZPS Formulation and Derivatives 6.7 Li, Na, K, Rb, and Cs Clusters and Skins 6.7.1 Na 2p and K 3p Entrapment 6.7.2 CN Dependent Binding Energy Shift 6.7.3 Li, Na, K Skins and Size Trends 6.7.4 Rb and Cs Skins and Size Trends 6.8 Diamond Structured Si and Pb 6.8.1 Entrapment of the 2p and the Valence Band of Si 6.8.2 Pb 5d Binding Energy Shift 6.9 Co, Fe, Pt, Rh, and Pd Nanocrystals 6.9.1 Co Islands: Valence Entrapment 6.9.2 Pd, Fe, Rh, and Pt: Core Level Entrapment 6.10 STS of Si and Pd Nanostructures 6.11 Summary References 7 Carbon Allotropes 7.1 Introduction 7.1.1 Wonders of CNTs and GNRs 7.1.2 Challenges and Objectives 7.2 Experimental Observations 7.2.1 STM/S-DFT: GNR Edge and Defect Polarization 7.2.2 TEM: CN-Resolved C–C Bond Energy 7.2.3 XPS: Core Level and Work Function 7.3 BOLS-TB Formulation and Quantification 7.4 ZPS: Monolayer Skin Entrapment and Defect Polarization 7.5 Summary References 8 Hetero-Coordinated Interfaces 8.1 Observations 8.2 BOLS-TB Formulation of the PES Attributes 8.3 ZPS: Core Band Entrapment and Polarization 8.3.1 Ag/Pd, Cu/Pd, Zn/Pd and Be/W Interfaces 8.3.2 C/Si, C/Ge, Si/Ge, Cu/Si and Cu/Sn Interfaces 8.4 Energy Density, Cohesive Energy, and Free Energy 8.5 Catalytic Nature, Toxicity, Radiation Protectivity and Mechanical Strength 8.6 Summary References 9 Hybridized Bonding 9.1 STS and IPES: Antibonding and Nonbonding States 9.2 ARPES: Holes, Nonbonding and Bonding States 9.3 Coverage Resolved O–Cu Valence DOS Evolution 9.4 DFT Derivatives 9.4.1 O–Ti(0001) 9.4.2 N–Ti(0001) 9.4.3 N–Ru(0001) and O–Ru(10overline1 0) 9.5 XPS and ZPS: Core Level Entrapment and Polarization 9.5.1 O–Ta(001) and O–Ta(111) 9.5.2 Monolayer High-TC and Topological Edge Superconductivity 9.5.3 Other Surfaces 9.6 Summary References 10 Hetero- and Under-Coordination Coupling 10.1 Ti(0001) Skin and TiO2 Nanocrystals 10.1.1 Photoactivity of Defected TiO2 10.1.2 XPS: Ti(0001) Skin 2p Band Shift 10.1.3 ZPS: Defect-Induced Entrapment and Polarization 10.1.4 Defect Enhanced Photocatalytic Ability 10.2 ZnO Nanocrystals Passivated with H, N, and O 10.2.1 ZPS: Size-Induced Entrapment-Polarization Transition 10.2.2 Band Gap, Work Function, and Magnetism 10.3 Scratched SrTiO3 Skin: Defect States 10.4 Summary References 11 Liquid Phase 11.1 Wonders of H2O Molecular Undercoordination and Salt Hydration 11.2 O:H–O Bond Oscillator Pair 11.2.1 Basic Rules for Water 11.2.2 O:H–O Bond Potentials and Cooperativity 11.2.3 Specific Heat and Phase Transition 11.3 Supersolidity and Quasisolidity 11.3.1 Signatures 11.3.2 Supercooling of Supersolid Phase 11.4 Electron Spectrometrics 11.4.1 STM and STS: Strong Polarization 11.4.2 Water Skin: Entrapment and Polarization 11.4.3 Ultrafast PES: Nonbonding Electron Polarization 11.4.4 XAS: Supersolid Thermal Stability 11.5 Proton Capture-Ability and Electron Emissibility of Halide Anions 11.6 Perspectives References 12 Perspectives 12.1 Advantages and Attainments 12.2 Limitations and Precautions 12.3 Prospects and Perspectives Part II Electron Diffraction: Bond-Band-Barrier Transition 13 Introduction 13.1 LEED, VLEED, STM/S, and PES 13.2 O–Cu(001) Surface Reaction 13.3 Objectives 13.4 Scope References 14 Principles: Bond-Band-Barrier Correlation 14.1 VLEED: Multibeam Resonant Diffraction 14.1.1 Multi-Beam Diffraction 14.1.2 Beam Interference 14.1.3 Scattering Matrices and Phase Shift 14.1.4 Multi-Atom Calculation Code 14.2 Oxide Tetrahedron Bond Formation 14.2.1 Observations 14.2.2 Rules for Surface Bond Formation 14.2.3 The Primary M2O Structure 14.2.4 O–Cu(001) Bond Geometry and Atomic Valency 14.2.5 Bond Geometry Versus Atomic Position 14.2.6 Mechanism of Surface Reconstruction 14.3 Valence Density-of-States 14.3.1 O−1 Derived Three DOS Features 14.3.2 O−2 Derived Four DOS Features 14.3.3 Anomalous H-Bond like 14.4 Energy-Dependent 3D-SPB 14.4.1 Initiatives 14.4.2 Complex Form of the Surface Potential Barrier (SPB) 14.4.3 One-Dimensional SPB 14.4.4 Energy Dependent 3D-SPB 14.4.5 Parameterization and Functionalization 14.4.6 Significance and Limitations of the 3D-SPB 14.5 Summary References 15 Methodology: Parameterization 15.1 Decoding Methodology 15.1.1 Data Calibration 15.1.2 Parameter Initialization 15.1.3 Calculation Methods 15.1.4 Criteria for Model Justification 15.2 Code Validation 15.2.1 Clean Cu(001) 15.2.2 Oxygen on Cu(001): Model Comparison 15.3 Cu3O2 Model Reality 15.3.1 Numerical Quantification 15.3.2 Physical Indication 15.4 Summary References 16 VLEED Capability and Sensitivity 16.1 Uniqueness of Solution 16.1.1 ReV(z; z0, λ) Sensitivity 16.1.2 ImV(z; z1, α) Correlation 16.1.3 Solution Certainty 16.2 VLEED Capacity and Reliability 16.2.1 Decoding Procedures 16.2.2 Sensitivity to the Bond Geometry 16.2.3 Sensitivity to the SPB 16.3 Summary References 17 Brillouin Zones, Effective Mass, Muffin-tin Potential, and Work Function 17.1 Angular-Resolved VLEED Profiles 17.2 Sharp Features: Brilliouin Zones and Energy Bands 17.2.1 Brillouin Zones and Effective Electron Masses 17.2.2 Lattice Reconstruction 17.2.3 Valence Bands 17.3 Bond Geometry, Valence DOS, and 3D-SPB 17.4 Inner Potential Constant and Work Function 17.4.1 Beam Energy Reduced V0 17.4.2 Oxygen Reduced V0 17.4.3 Oxygen Reduced Local ϕL(E) 17.5 Mechanism Clarification 17.5.1 Oxygen and Beam Energy Reduced V0 17.5.2 Oxygen Reduced Local ϕL(E) 17.6 Summary References 18 Four-Stage Cu3O2 Bonding Dynamics 18.1 Exposure-Resolved VLEED: Four-Stage Reaction Kinetics 18.2 Geometrical Examination 18.3 Four-Stage Cu3O2 Bonding and Band Forming Kinetics 18.4 Aging and Annealing Effects on VLEED Profiles 18.5 De-Hybridisation of Oxygen 18.6 Summary References 19 Perspectives References Part III Multifield Phonon Dynamics 20 Wonders of Multifield Lattice Oscillation 20.1 Scope 20.2 Significance of Multifield Lattice Oscillation 20.3 Outline of Experimental Observations 20.3.1 Size Matter—Atomic Undercoordination 20.3.2 Compression and Directional Uniaxial-Stain 20.3.3 Debye Thermal Decay 20.4 Overview on Theoretical Progress 20.4.1 Quantum Size Trends 20.4.2 Grüneisen Notion for Compression and Thermal Excitation 20.4.3 Phonon Optical-Acoustic Thermal Degeneration 20.5 Motivation and Objectives References 21 Theory: Multifield Oscillation Dynamics 21.1 Lattice Oscillation Dynamics 21.1.1 Single-Body Hamiltonian 21.1.2 Atomic Chains 21.1.3 Lagrangian Mechanics of Coupled Oscillators 21.1.4 Collective Oscillation 21.2 Taylor Coefficients Versus Observables 21.3 Single Bond Multifield Oscillations 21.3.1 Bond Length and Energy Relaxation 21.3.2 Phonon Frequency Shift 21.4 Formulation of Multifield Perturbation 21.4.1 Atomic Undercoordination 21.4.2 Thermal Excitation: Debye Thermal Decay 21.4.3 Mechanical Compression: Elasticity and Energy Density 21.4.4 Uniaxial Stretch: Single Bond Force Constant 21.5 From Spectroscopy to Spectrometrics 21.6 Summary References 22 Layered Structures 22.1 Wonders of the 2D Structures 22.2 Orbital Hybridization and Structure Configuration 22.2.1 Phonon Frequency Tunability 22.3 Numerical Reproduction of Phonon Relaxation 22.3.1 Number-of-Layer Dependence 22.3.2 Strain-Induced Phonon Softening and Band Splitting 22.3.3 Mechanical Compression and Thermal Excitation 22.3.4 Thermal Relaxation of Bandgap Energy 22.3.5 Edge Discriminative Raman Reflectivity 22.4 Summary References 23 Sized Crystals 23.1 Skin Thickness of the Core-Shelled Structures 23.2 Nanocrystals: Size and Thermal Effects 23.2.1 Raman Shift of the Core-Shelled Crystals 23.2.2 Skin Dominated Size Dependency 23.2.3 Intergrain Interaction Derived THz Phonons 23.2.4 Joint Effect of Size Reduction and Thermal Excitation 23.2.5 Vibration Amplitude and Frequency of the Skin Atom 23.3 Bulk Crystals: Compression and Thermal Excitation 23.3.1 Group IV Semiconductors 23.3.2 Group III-Nitrides 23.3.3 TiO2 and ZnO 23.3.4 Other Compounds 23.4 Summary References 24 Water and Aqueous Solutions 24.1 Water and Aqueous Solutions 24.2 O:H–O Bond Segmental Cooperativity 24.2.1 Physical Multifield Perturbation 24.2.2 Acid, Base, Salt Solvation 24.3 DPS of Water and Solutions 24.4 Fraction of Bond Transition and Solute-Solute Interactions 24.5 Surface Stress, Diffusivity and Viscosity 24.6 Phase Transition by Compression and Ionic Polarization 24.6.1 Spectrometric Varification 24.6.2 Phonon Spectrometric Verification 24.7 Summary References 25 Perspectives 25.1 Attainments 25.2 Perspectives Appendix A Advantages and Limitations of the Electron and Phonon Spectrometrics Appendix B Introduction of the “Spectral Studio” Analytical Package References Index