دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: G.S.N. Raju
سری:
ISBN (شابک) : 9788131701713, 9788131799932
ناشر: Pearson Education
سال نشر: 2013
تعداد صفحات: [606]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Electromagnetic Field Theory & Transmission Lines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری میدان الکترومغناطیسی و خطوط انتقال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Preface Acknowledgement Contents Introduction Applications of Electromagnetic Field Theory Differences between Circuit Theory and Electromagnetic Field Theory Notation of Scalar Parameters Notation of Vector Parameters Small Value Representation Large Value Representation Frequency Ranges of TV Channels Some Great Contributors to Electromagnetic Field Theory Chapter 1: Mathematical Preliminaries 1.1 Fundamentals of Scalars and Vectors 1.2 Coordinate Systems Cartesian Coordinate System Properties of unit vectors Cylindrical Coordinate System Spherical Coordinate System 1.3 Del (V) Operator 1.4 Gradient of a Scalar, V (= V) 1.5 Divergence of a Vector, A (= A) Examples and Features of Divergence 1.6 Curl of a Vector (= v × A) 1.7 Laplacian Operator (2) 1.8 Dirac Delta 1.9 Decibel and Neper Concepts 1.10 Complex Numbers Properties of Complex Numbers 1.11 Logarithmic Series and Identities 1.12 Quadratic Equations 1.13 Cubic Equations 1.14 Determinants Application of Determinants Minor of a Determinant Properties of Determinants 1.15 Matrices Applications of Matrices Types of Matrices Properties of Matrices 1.16 Factorial 1.17 Permutations 1.18 Combinations 1.19 Basic Series 1.20 Exponential Series 1.21 Sine and Cosine Series 1.22 Sinh and Cosh Series 1.23 Hyperbolic Functions 1.24 Sine, Cosine, Tan and Cot Functions 1.25 Some Special Functions Gamma function Beta function Error function Bessel function Fresnel integral Sine integral Cosine integral Exponential integral Logarithmic integral 1.26 Partial Derivative 1.27 Some Differentiation Formulae 1.28 Some Useful Integration Formulae 1.29 Radian and Steradian 1.30 Integral Theorems Points/Formulae to Remember Solved Problems Objective Questions Exercise Problems Chapter 2: Electrostatic Fields 2.1 Introduction 2.2 Applications of Electrostatic Fields 2.3 Different Types of Charge Distributions Properties and Functions of Charges 2.4 Coulomb’s Law 2.5 Applications of Coulomb’s Law 2.6 Limitation of Coulomb’s Law 2.7 Electric Field Strength due to Point Charge 2.8 Salient Features of Electric Intensity 2.9 Electric Field due to Line Charge Density 2.10 Electric Field Strength due to Infinite Line Charge 2.11 Field due to Surface Charge Density, rs (C/m2) 2.12 Field due to Volume Charge Density, ru (C/m3) 2.13 Potential 2.14 Potential at a Point 2.15 Potential Difference 2.16 Salient Features of Potential Difference 2.17 Potential Gradient 2.18 Salient Features of Potential Gradient 2.19 Equipotential Surface 2.20 Potential due to Electric Dipole 2.21 Electric Field due to Dipole 2.22 Electric Flux 2.23 Salient Features of Electric Flux 2.24 Faraday’s Experiment to Define Flux 2.25 Electric Flux Density 2.26 Salient Features of Electric Flux Density, D 2.27 Gauss’s Law and Applications 2.28 Proof of Gauss’s Law (on Arbitrary Surface) 2.29 Gauss’s Law in Point Form 2.30 Divergence of a Vector, Electric Flux Density 2.31 Applications of Gauss’s Law 2.32 Limitations of Gauss’s Law 2.33 Salient Features of Gauss’s Law 2.34 Poisson’s and Laplace’s Equations 2.35 Applications of Poisson’s and Laplace’s Equations 2.36 Uniqueness Theorem 2.37 Boundary Conditions on E and D 2.38 Proof of Boundary Conditions 2.39 Conductors in Electric Field Conductors 2.40 Properties of Conductors 2.41 Electric Current 2.42 Current Densities 2.43 Equation of Continuity 2.44 Relaxation Time (Tr) 2.45 Relation between Current Density and Volume Charge Density 2.46 Dielectric Materials in Electric Field 2.47 Properties of Dielectric Materials Dielectrics in Electric Field 2.48 Dipole Moment, p 2.49 Polarisation, P 2.50 Capacitance of Different Configurations 2.51 Energy Stored in an Electrostatic Field 2.52 Energy in a Capacitor Points/Formulae to Remember Objective Questions Multiple Choice Questions Exercise Problems Chapter 3: Steady Magnetic Fields 3.1 Introduction 3.2 Applications of Magnetostatic Fields 3.3 Fundamentals of Steady Magnetic Fields 3.4 Faraday’s Law of Induction 3.5 Magnetic Flux Density, B (wb/m2) 3.6 Ampere’s Law for Current Element or Biot-Savart Law 3.7 Field due to Infinitely Long Current Element 3.8 Field due to a Finite Current Element 3.9 Ampere’s Work Law or Ampere’s Circuit Law 3.10 Differential Form of Ampere’s Circuit Law 3.11 Stoke’s Theorem 3.12 Force on a Moving Charge due to Electric and Magnetic Fields 3.13 Applications of Lorentz Force Equation 3.14 Force on a Current Element in a Magnetic Field 3.15 Ampere’s Force Law 3.16 Boundary Conditions on H and B 3.17 Scalar Magnetic Potential 3.18 Vector Magnetic Potential 3.19 Force and Torque on a Loop or Coil 3.20 Materials in Magnetic Fields Diamagnetic Materials Paramagnetic Materials Ferromagnetic Materials 3.21 Magnetisation in Materials Magnetic Dipole Moment, m 3.22 Inductance 3.23 Standard Inductance Configurations Toroid Solenoid Coaxial Cable Parallel Conductors of Radius, a 3.24 Energy Density in a Magnetic Field 3.25 Energy Stored in an Inductor 3.26 Expression for Inductance, L, in Terms of Fundamental Parameters 3.27 Mutual Inductance Definition of Mutual Inductance Coefficient of Coupling Calculation of Mutual Inductance, M 3.28 Comparison between Electric and Magnetic Fields/Circuits/Parameters Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 4: Maxwell's Equations 4.1 Introduction 4.2 Equation of Continuity for Time Varying Fields 4.3 Maxwell’s Equations for Time Varying Fields 4.4 Meaning of Maxwell’s Equations 4.5 Conversion of Differential Form of Maxwell’s Equation to Integral Form 4.6 Maxwell’s Equations for Static Fields 4.7 Characteristics of Free Space 4.8 Maxwell’s Equations for Free Space 4.9 Maxwell’s Equations for Static Fields in Free Space 4.10 Proof of Maxwell’s Equations 4.11 Sinusoidal Time Varying Field 4.12 Maxwell’s Equations in Phasor Form 4.13 Influence of Medium on the Fields 4.14 Types of Media 4.15 Summary of Maxwell’s Equations for Different Cases 4.16 Conditions at a Boundary Surface 4.17 Proof of Boundary Conditions on E, D, H and B 4.18 Complete Boundary Conditions in Scalar Form 4.19 Boundary Conditions in Vector Form 4.20 Time Varying Potentials 4.21 Retarded Potentials 4.22 Maxwell’s Equations Approach to Relate Potentials, Fields and Their Sources 4.23 Helmholtz Theorem 4.24 Lorentz Gauge Condition Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 5: Electromagnetic Fields and Waves 5.1 Introduction 5.2 Applications of EM Waves 5.3 Wave Equations in Free Space 5.4 Wave Equations for a Conducting Medium 5.5 Uniform Plane Wave Equation 5.6 General Solution of Uniform Plane Wave Equation 5.7 Relation between E and H in Uniform Plane Wave 5.8 Proof of E and H of EM Wave being Perpendicular to Each Other 5.9 Wave Equations in Phasor Form 5.10 Wave Propagation in Lossless Medium 5.11 Propagation Characteristics of EM Waves in Free Space 5.12 Propagation Characteristics of EM Waves in Conducting Medium 5.13 Summary of Propagation Characteristics of EM Waves in a Conducting Medium 5.14 Conductors and Dielectrics 5.15 Wave Propagation Characteristics in Good Dielectrics 5.16 Summary of the Propagation Characteristics of EM Waves in Good Dielectrics 5.17 Wave Propagation Characteristics in Good Conductors 5.18 Summary of Characteristics of Wave Propagation in Good Conductors 5.19 Depth of Penetration, d (m) 5.20 Polarisation of a Wave Linear Polarisation Circular Polarisation Elliptical Polarisation 5.21 Sources of Different Polarised EM Waves 5.22 Direction Cosines of a Vector Field 5.23 Wave on a Perfect Conductor—Normal Incidence 5.24 Waves on Dielectric—Normal Incidence 5.25 Oblique Incidence of a Plane Wave on a Boundary Plane Elliptical Polarisation Perpendicular Polarisation Plane of Incidence 5.26 Oblique Incidence of Wave on Perfect Conductor Parallel Polarisation Perpendicular Polarisation 5.27 Oblique Incidence of a Plane Wave on Dielectric Parallel Polarisation Perpendicular Polarisation 5.28 Brewster Angle 5.29 Total Internal Reflection 5.30 Surface Impedance 5.31 Poynting Vector and Flow of Power 5.32 Complex Poynting Vector Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 6: Guided Waves 6.1 Introduction 6.2 Waves between Parallel Plates 6.3 Derivation of Field Equations between Parallel Plates and Propagation Parameters 6.4 Field Components for TE Waves (Ez = 0) 6.5 Field Components of TM Waves (Hz = 0) 6.6 Propagation Parameters of TE and TM Waves 6.7 Guide Wavelength 6.8 Transverse Electromagnetic Wave (TEM Wave) 6.9 Velocities of Propagation 6.10 Attenuation in Parallel Plate Guides 6.11 Wave Impedances 6.12 Waves in Rectangular Waveguides 6.13 Derivation of Field Equations in Rectangular Hollow Waveguides Transverse Magnetic (TM) Waves in Rectangular Waveguide Transverse Electric Waves 6.14 Propagation Parameters of TE and TM Waves in Rectangular Waveguides Transverse Electromagnetic Waves 6.15 TEM Wave Does Not Exist in Hollow Waveguides 6.16 Excitation Methods for Different TE and TM Waves/Modes 6.17 Evanescent Wave or Mode 6.18 Wave Impedance in Waveguide 6.19 Power Transmitted in a Lossless Waveguide Power Dissipation in a Lossy Waveguide 6.20 Waveguide Resonators Features of Resonator TM Mode (Hz = 0) TE Mode (Ez=0) Dominant Mode Degenerate Mode 6.21 Salient Features of Cavity Resonators 6.22 Circular Waveguides 6.23 Salient Features of Circular Waveguides Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 7: Transmission Lines 7.1 Transmission Lines 7.2 Types of Transmission Lines 7.3 Applications of Transmission Lines 7.4 Equivalent Circuit of a Pair of Transmission Lines Electric and Magnetic Fields in Parallel Plate and Coaxial Lines 7.5 Primary Constants 7.6 Transmission Line Equations 7.7 Input Impedance of a Transmission Line 7.8 Secondary Constants 7.9 Lossless Transmission Lines 7.10 Distortionless Line 7.11 Phase and Group Velocities 7.12 Loading of Lines 7.13 Input Impedance of Lossless Transmission Line 7.14 RF Lines 7.15 Relation between Reflection Coefficient, Load and Characteristic Impedances 7.16 Relation between Reflection Coefficient and Voltage Standing Wave Ratio (VSWR) 7.17 Lines of Different Length 7.18 Losses in Transmission Lines Copper loss Dielectric Losses Radiation losses 7.19 Smith Chart and Applications Construction of Smith Chart Applications of Smith Chart 7.20 Stubs Design of Single Stub Matching 7.21 Double Stubs Design Methodology Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 8: Radiation and Antennas 8.1 General Solution of Maxwell’s Equations 8.2 Expressions for E and H in Terms of Potentials Expressions Relating Potentials and Their Sources Helmholtz Theorem 8.3 Retarded Potentials 8.4 Antenna Definition 8.5 Functions of an Antenna 8.6 Properties of an Antenna 8.7 Antenna Parameters 8.8 Basic Antenna Elements 8.9 Radiation Mechanism 8.10 Radiation Fields of an Alternating Current Element (or Oscillating Electric Dipole) 8.11 Radiated Power and Radiation Resistance of a Current Element 8.12 Radiation, Induction and Electrostatic Fields 8.13 Hertzian Dipole 8.14 Different Current Distributions in Linear Antennas 8.15 Radiation from Half Wave Dipole 8.16 Radiation from Quarter Wave Monopole 8.17 Radiation Characteristics of Dipoles Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Chapter 9: Advanced Topics 9.1 Introduction 9.2 Secondary Sources of Electromagnetic Fields 9.3 Reciprocity in Electromagnetic Field Theory 9.4 Reaction Concept 9.5 Induction and Equivalence Theorems 9.6 Electromagnetic Interference and Compatibility (EMI/EMC) 9.7 EMI Sources 9.8 Effects of EMI 9.9 Methods to Eliminate EMI or Design Methods for EMC Shielding Grounding Bonding Filtering 9.10 Need for EMC Standards 9.11 EMC Standards Military Standards Civilian Standards 9.12 Advantages of EMC Standards 9.13 EMC Standards in Different Countries 9.14 Biological Effects of EMI/EMR (Electromagnetic Interference/Electromagnetic Radiation) 9.15 Electrostatic Discharge (ESD) Methods of Separation of Charge 9.16 Origin of ESD Event 9.17 Electromagnetic Pulse (EMP) 9.18 Numerical Techniques for the Analysis of Electromagnetic Fields 9.19 Finite Difference Method (FDM) 9.20 Finite Element Method (FEM) 9.21 Method of Moments (MOM) Solved Problems Points/Formulae to Remember Objective Questions Answers Multiple Choice Questions Answers Exercise Problems Objective Questions and Answers Bibliography Index