دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: 3 نویسندگان: Leander W. Matsch, J. Derald Morgan سری: Harper & Row Power & Machinery Series ISBN (شابک) : 9780060442712 ناشر: Harper & Row سال نشر: 1986 تعداد صفحات: 601 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Electromagnetic and Electromechanical Machines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ماشین آلات الکترومغناطیسی و الکترومکانیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن به خوبی تثبیت شده بر مفاهیم فیزیکی و نه ریاضی درگیر در تجزیه و تحلیل ماشینهای معمولی تأکید میکند و بر خواص الکترومغناطیسی دستگاههایی که اساساً الکترومکانیکی هستند تمرکز دارد. این نسخه سوم که توسط مورگان به روز شده است، رویکرد کاربردی و کاربردی محور و وسعت پوشش نسخه های قبلی را حفظ می کند. فصلی در مورد مدارهای قدرت، معرفی ماشینهای AC قبل از ماشینهای DC، تئوری سیستمها و پوشش منحصربهفرد اصول بهرهوری انرژی و تحلیل اقتصادی است که به دانشآموزان نشان میدهد چگونه ماشینها را برای کاربردهای واقعی انتخاب کنند. مصور.
This well-established text emphasizes the physical rather than mathematical concepts involved in analyzing conventional machinery, focusing on the electromagnetic properties of devices which are essentially electromechanical. This Third Edition, brought up to date by Morgan, maintains the practical, applications-oriented approach and breadth of coverage of the previous editions. New to this edition are a chapter on power circuits, the introduction of AC machines before DC machines, systems theory, and unique coverage of principles of energy efficiency and economic analysis, which shows students how to choose machines for real-world applications. Illustrated.
Preface Acknowledgments Chapter 1: Basic Concepts of Power Circuits 1-1 Phasor Diagrams 1-2 AC Circuit Relationships 1-2.1 Single-Subscript Notation 1-2.2 Double-Subscript Notation 1-3 Three-Phase Circuits 1-3.1 Delta-Connected Impedances 1-3.2 Balanced Delta-Connected Load 1-3.3 Wye-Connected Impedances 1-3.4 Three-Wire, Wye-Arrangement (Neutral Connection Open) 1-3.5 Balanced Wye-Connected Load 1-3.6 Four-Wire Arrangement (Load Neutral Connected to Source Neutral) 1-3.7 Phase Sequence 1-4 Complex Power 1-4.1 Power Triangle 1-4.2 Power Flow 1-4.3 Power in Balanced Three-Phase Circuits 1-5 Per-Unit Quantities Study Questions Problems Bibliography Chapter 2: Energy Conversion 2-1 Force in a Capacitor 2-2 The Toroid 2-3 Series and Parallel Magnetic Circuits 2-4 Magnetic Materials 2-5 Iron and Air 2-5.1 Magnetic Leakage and Fringing 2-5.2 Graphical Analysis 2-5.3 Core Losses Hysteresis Loop Hysteresis Loss Reentrant Loop Rotational Hysteresis Loss Maximum Flux Density under Sinusoidal Excitation Eddy-Current Loss High-Frequency Magnetic Materials 2-6 Flux Linkage and Equivalent Flux 2-6.1 Energy Stored in Magnetic Circuits 2-6.2 Self-Inductance 2-6.3 Mutual Inductance Coefficient of Coupling 2-7 Magnetic Force 2-7.1 Force and Torque in Singly Excited Magnetic Circuits 2-7.2 Force and Torque in Multiply Excited Magnetic Circuits 2-7.3 Force and Energy in Nonlinear Magnetic Circuits Energy Relations in Nonlinear Magnetic Circuits 2-8 Permanent Magnets 2-8.1 Operating Characteristics of Permanent Magnets 2-8.2 Energy Product 2-8.3 Square-Loop Ferrites Study Questions Problems Bibliography Chapter 3: The Transformer 3-1 The Two-Winding Transformer 3-2 The Ideal Two-Winding Transformer 3-2.1 Voltage Ratio and Transformer Polarity 3-2.2 Current Ratio 3-2.3 Impedance Ratio 3-3 Exciting Current, Core-Loss Current and Magnetizing Current 3-3.1 Core-Loss Current 3-3.2 Magnetizing Current 3-3.3 Waveform of Exciting Current 3-3.4 Core-Loss Current 3-3.5 Magnetizing Current, Including Harmonics 3-4 Leakage Impedance 3-4.1 The Equivalent Circuit 3-4.2 The Approximate Equivalent Circuit 3-5 Coupled-Circuit Equations 3-5.1 Leakage Inductance 3-5.2 Magnetizing Inductance 3-5.3 Coefficient of Coupling 3-6 Open-Circuit and Short-Circuit Tests, Exciting Admittance, and Equivalent Impedance 3-7 Transformer Losses and Efficiency 3-8 Voltage Regulation 3-9 Autotransformers 3-10 Instrument Transformers 3-11 Three-Phase Transformer Connections 3-11.1 Delta-Delta Connection 3-11.2 Wye-Wye Connection 3-11.3 Wye-Delta Connection 3-11.4 Open-Delta or V-V Connection 3-11.5 Three-Phase Transformers 3-11.6 Three-to-Six-Phase Transformation 3-12 Per-Unit Quantities of Transformers 3-13 Multicircuit Transformers 3-13.1 Open-Circuit and Short-Circuit Tests 3-14 Third Harmonics in Three-Phase Transformer Operation 3-15 Current Inrush 3-16 Reactors 3-16.1 Volume of Air Gap 3-16.2 Rating of Reactors and Transformers Study Questions Problems Bibliography Chapter 4: Synchronous Machines 4-1 Introduction 4-2 Waveform 4-3 AC Armature Windings 4-4 Induced Armature Voltage 4-4.1 Voltage Induced in a Generator Armature Coil 4-4.2 Voltage Induced in a Distributed Winding 4-4.3 Pitch Factor and Breadth Factor for Harmonics 4-5 Armature MMF 4-5.1 Fundamental Component of mmf Space Wave 4-5.2 Angular Displacement between mmf Waves 4-6 Unsaturated Inductances of a Cylindrical-Rotor Machine 4-6.1 Inductance of the Field 4-6.2 Magnetizing Inductance (Inductance of Armature Reaction) 4-6.3 Self- and Mutual-Inductance Components of Magnetizing Inductance in Three-Phase Windings 4-7 Phasor Diagram of Cylindrical-Rotor Synchronous Generator 4-7.1 Leakage Flux 4-7.2 Synchronous Reactance 4-7.3 Equivalent Circuit 4-7.4 Current-Source Representation 4-8 Idealized Three-Phase Generator—General Relationship in Terms of Inductances 4-9 Generator Delivering Balanced Load 4-10 Torque 4-11 Open-Circuit and Short-Circuit Tests 4-11.1 Open-Circuit Characteristic 4-11.2 Short-Circuit Test 4-11.3 Unsaturated Synchronous Impedance 4-11.4 Approximation of the Saturated Synchronous Reactance 4-12 Voltage Regulation 4-13 Short-Circuit Ratio 4-14 Real and Reactive Power versus Power Angle 4-15 Synchronous-Motor V Curves 4-16 Excitation Systems for Synchronous Machines 4-16.1 Brushless Excitation System 4-17 Direct-Axis and Quadrature-Axis Synchronous Reactance in Salient-Pole Machines—Two-Reactance Theory 4-18 Zero-Power-Factor Characteristic and Potier Triangle 4-18.1 Graphical Determination of the Potier Triangle 4-18.2 Potier Reactance 4-19 Use of Potier Reactance to Account for Saturation 4-19.1 Saturation-Factor Method 4-20 Slip Test for Determining xd and xq 4-21 Torque-Angle Characteristic of Salient-Pole Machines Power Associated with Iq Power Associated with Id Total Complex Power 4-22 Synchronous-Motor Starting 4-23 Features and Application of Synchronous Motors Study Questions Problems Bibliography Chapter 5: The Induction Motor 5-1 The Polyphase Induction Motor 5-2 Magnetizing Reactance and Leakage Reactance 5-2.1 Magnetizing Reactance 5-2.2 Leakage Reactance 5-3 Rotor Current and Slip 5-3.1 Induction Motor Slip 5-3.2 Rotor Current 5-4 Rotor Copper Loss and Slip 5-5 Equivalent Circuit of the Polyphase Wound-Rotor Induction Motor 5-5.1 Approximate Equivalent Circuit with Adjusted Voltage 5-5.2 Mechanical Power and Torque 5-5.3 Phasor Diagram of the Polyphase Wound-Rotor Induction Motor 5-6 Polyphase Squirrel-Cage Induction Motor 5-6.1 Transformation Ratio of the Squirrel-Cage Induction Motor 5-6.2 Double-Squirrel-Cage and Deep-Bar Motors 5-6.3 Equivalent Circuits for Multiple-Cage Polyphase Induction Motors 5-6.4 Skewing 5-7 No-Load and Locked-Rotor Tests No-Load Test Locked-Rotor Test 5-8 Polyphase-Induction Motor-Slip-Torque Relationship Based on Approximate Equivalent Circuit 5-8.1 Starting Torque 5-8.2 Maximum Torque 5-8.3 Influence of Rotor Resistance on Slip 5-8.4 Influence of Reactances on Motor Performance 5-9 Wound-Rotor Motor Starting and Speed Control 5-10 Speed Control of Polyphase Induction Motors 5-10-1 Variable Frequency 5-10.2 Line-Voltage Control 5-11 Applications of Polyphase Induction Motors 5-12 Reduced-Voltage Starting 5-13 Asynchronous Generator 5-14 Single-Phase Induction Motors 5-15 Methods of Starting Single-Phase Induction Motors 5-16 Two-Revolving-Field Theory 5-16.1 Torque 5-16.2 Double-Frequency Torque 5-17 No-Load and Locked-Rotor Tests on the Single-Phase Induction Motor 5-17.1 No-Load Test 5-17.2 Locked-Rotor Test 5-17.3 Winding Resistance Test 5-18 The Capacitor Motor 5-18.1 Equivalent Circuit of the Capacitor Motor Based on the Two-Revolving-Field Theory 5-18.2 Torque Study Questions Problems Bibliography Chapter 6: Direct-Current Machines 6-1 Structural Features of Commutator Machines 6-2 Elementary Machine 6-2.1 Voltage Induced in a Full-Pitch Armature Coil 6-2.2 General EMF Equation for DC Machines 6-3 Armature Windings 6-3.1 Lap Windings 6-3.2 Wave Windings 6-4 Field Excitation 6-5 Armature Reaction—MMF and Flux Components 6-5.1 Effect of Shifting Brushes from Geometric Neutral 6-5.2 Commutating Poles or Interpoles 6-5.3 Compensating Windings 6-5.4 Ratio of Field mmf to Armature mmf 6-5.5 Demagnetization Due to Cross-Magnetizing mmf 6-6 Commutation 6-7 Voltage Buildup in Self-Excited Generators—Critical Field Resistance 6-8 Load Characteristics of Generators 6-8.1 Separately Excited Generator 6-8.2 Self-Excited Shunt Generator 6-8.3 Series Generator 6-8.4 Compound Generator 6-9 Analysis of Steady-State Generator Performance 6-9.1 Self-Excited Shunt Generator 6-9.2 Effect of Speed on Shunt Generator Performance 6-9.3 Series Generator Graphical Analysis 6-9.4 Compound Generator 6-10 Armature Characteristic or Field-Compounding Curve 6-11 Compounding a Generator 6-12 Efficiency and Losses 6-13 Motor Torque 6-14 Speed-Torque Characteristics 6-14.1 Shunt Motor 6-14.2 Series Motor 6-14.3 Compound Motor 6-15 Steady-State Characteristics of the Shunt Motor 6-16 Steady-State Performance Characteristics of the Series Motor 6-17 Compound-Motor Steady-State Performance Characteristics 6-18 Motor Starting 6-19 Dynamic and Regenerative Braking of Motors 6-20 Dynamic Behavior of DC Machines 6-21 Basic Motor Equations 6-22 Linearization for Small-Signal Response 6-23 Phasor Relationships for Small Oscillations 6-24 Variable Armature Voltage, Constant Field Current 6-25 The Separately Excited DC Motor as a Capacitor 6-26 The Separately Excited DC Generator 6-27 Transfer Functions for the Separately Excited Generator 6-28 Control of Output Voltage 6-29 The Ward-Leonard System 6-30 Solid-State Controls for DC Machines 6-31 Basic Similarities in Induction Machines, Synchronous Machines, and DC Machines 6-32 Electromechanical Machines and Device Ratings Voltage Current Speed Frequency Power Temperature Rise Volt-Amperes Service Factor Efficiency Index Other Ratings 6-33 Energy Management and Economic Considerations in Motor Selection 6-33.1 Power Factor vs. Efficiency 6-33.2 Calculating Annual Savings 6-33.3 Higher-Efficiency Payback 6-33.4 Time Value of Money, Present Worth, and Life Cycle 6-33.5 Other Considerations Study Questions Problems Bibliography Chapter 7: System Applications of Synchronous Machines 7-1 Synchronous Generator Supplying an Isolated System 7-2 Parallel Operation of Synchronous Generators 7-2.1 Requirements for Connecting Synchronous Generators in Parallel 7-2.2 Loading a Synchronous Generator 7-2.3 Equal Real-Power Loads and Equal Reactive-Power Loads 7-2.4 Loci for Generated Voltage for Constant Terminal Voltage and Constant Frequency 7-2.5 Locus of Generated Voltage for Constant Real Power and Variable Excitation 7-2.6 Locus of Generated Voltage for Constant Excitation and Variable Real Power 7-3 RMS Current on Three-Phase Short Circuit 7-4 Salient-Pole Generator—General Relationships 7-4.1 Inductances of Salient-Pole Machines 7-4.2 d-Axis, q-Axis, and Zero-Sequence Quantities, Currents in Damper Circuits Negligible 7-5 Instantaneous Three-Phase Short-Circuit Current Before Short Circuit After Short Circuit 7-5.1 Subtransient Reactance 7-6 Time Constants 7-6.1 Direct-Axis Open-Circuit Time Constant, T\'do 7-6.2 Direct-Axis Short-Circuit Transient Time Constant, T\'d 7-6.3 Direct-Axis Short-Circuit Subtransient Time Constant, T\'\'d 7-6.4 Armature Short-Circuit Time Constant, Ta 7-7 Three-Phase Short Circuit from Loaded Conditions 7-8 Transient Stability 7-8.1 Equal-Area Criterion 7-8.2 Transient Stability Limit 7-9 Swing Curves 7-9.1 The Swing Equation 7-9.2 Swing Curves 7-10 Dynamic Stability 7-10.1 Dual Excitation Study Questions Problems Bibliography Chapter 8: Special Machines 8-1 Reluctance Motors 8-1.2 Polyphase Reluctance Motors 8-2 Hysteresis Motor 8-3 Inductor Alternator 8-3.1 Homopolar Type 8-3.2 Heteropolar Type 8-4 Step Motors 8-4.1 Synchronous Inductor-Motor Operation 8-4.2 Stepper Operation 8-4.3 Bifilar Windings 8-5 Ceramic Permanent-Magnet Motors 8-5.1 Motor Characteristics 8-5.2 Applications 8-6 AC Commutator Motors 8-6.1 Single-Phase Series Motor 8-6.2 Universal Motors 8-6.3 Repulsion Motor 8-7 Control Motors 8-7.1 AC Tachometer 8-7.2 Two-Phase Control Motors 8-8 Self-Synchronous Devices 8-8.1 Three-Phase Selsyns 8-8.2 Single-Phase Selsyns 8-8.3 Synchro Control Transformers 8-9 Acyclic Machines 8-9.1 Acyclic Generators 8-9.2 Linear Acyclic Machines—Conduction Pumps 8-9.3 Induction Pumps 8-10 Magnetohydrodynamic Generators 8-10.1 Hall Effect 8-10.2 MHD Steam Power Plants 8-10.3 AC MHD Study Questions Problems Bibliography Chapter 9: Direct Conversion to Electrical Energy 9-1 Fuel Cells 9-2 Thermoelectrics 9-2.1 Maximum Output 9-2.2 Figure of Merit 9-2.3 Maximum Efficiency 9-3 Thermionic Converter 9-3.1 Work Function and Richardson’s Equation 9-3.2 Space Charge 9-3.3 Efficiency 9-3.4 Maximum Output 9-3.5 Applications 9-4 Photovoltaic Generator 9-4.1 Photons 9-4.2 Solar Energy Study Questions Bibliography APPENDIX A: Laplace Transformation A-1 The Laplace Transformation A-2 Transforms of Simple Functions A-2.1 Initial- and Final-Value Theorems Initial-Value Theorem Final-Value Theorem APPENDIX B: Constants and Conversion Factors APPENDIX C: Metadyne, Amplidyne, and Rotary Regulators C-1 Equations for the Metadyne C-1.1 Equations for the Amplidyne C-2 The Amplidyne C-2.1 Steady-State Performance C-3 The Rototrol and the Regulex C-3.1 Constant Motor Speed Control Index