دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Madhav Datta سری: ISBN (شابک) : 0367407035, 9780367407032 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 313 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Electrodissolution Processes: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیندهای انحلال الکتریکی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فرایندهای انحلال الکتریکی: مبانی و کاربردها اصول اساسی مربوط به فرآیندهای انحلال آندی با سرعت بالا و کاربرد آنها در ماشینکاری پیشرفته، ریزماشینکاری و عملیات تکمیلی را مورد بحث قرار میدهد. بخش اصولی کتاب در مورد رفتار انحلال آندی کلاسهای مختلف فلزات و تأثیر انتقال جرم، توزیع جریان و خواص لایه سطحی بر سرعت حذف فلز و تکمیل سطح بحث میکند. بخش کاربردهای کتاب، عناصر ضروری تکنیک های الکتروشیمیایی و کمکی برای ماشینکاری دقیق، ریزماشین کاری، و پرداخت مواد پیشرفته، از جمله مواد سرامیکی رسانای سخت به ماشین را ارائه می دهد.
ویژگی ها
Madhav Datta رئیس مرکز تحقیقات صنعتی و نوآوری Amrita و یک استاد برجسته در گروه مهندسی شیمی و علوم مواد، Amrita است. دانشگاه، کویمباتور، هند.
Electrodissolution Processes: Fundamentals and Applications discusses the basic principles involved in high-rate anodic dissolution processes and their application in advanced machining, micromachining, and finishing operations. The fundamentals section of the book discusses the anodic dissolution behavior of different classes of metals and the influence of mass transport, current distribution, and surface film properties on the metal removal rate and surface finishing. The applications section of the book presents essential elements of electrochemical and assisted techniques for precision machining, micromachining, and polishing of advanced materials, including hard-to-machine conducting ceramic materials.
Features
Madhav Datta is the Chairman of Amrita Center for Industrial Research and Innovation and a Distinguished Professor in the Department of Chemical Engineering and Materials Science, Amrita University, Coimbatore, India.
Cover Half Title Title Page Copyright Page Table of Contents Preface Author Chapter 1 Open-Circuit Metal Dissolution Processes 1.1 Introduction 1.2 Corrosion 1.2.1 Types of Corrosion 1.2.2 Fundamentals of Corrosion 1.2.2.1 Corrosion Thermodynamics 1.2.2.2 Corrosion Kinetics 1.2.3 Pitting Corrosion 1.2.4 Corrosion Prevention 1.3 Chemical Etching 1.3.1 Photochemical Etching 1.3.2 Printed Circuit Boards 1.3.3 Anisotropy Considerations 1.4 Chemical Mechanical Polishing 1.4.1 CMP in Copper Interconnect Technology 1.4.1.1 Dishing and Erosion 1.4.2 CMP Slurry Components 1.4.3 Final Remarks References Chapter 2 Anodic Behavior of Metals 2.1 Introduction 2.2 Active Dissolution 2.3 Passivation 2.3.1 Experimental Techniques for the Study of Passive Films 2.3.2 Anodic Passive Films on Metals 2.3.2.1 Passive Films on Ni, Fe, and Their Alloys 2.3.2.2 Anodic Oxide Films on Valve Metals 2.4 Transpassivity 2.4.1 Pitting 2.4.2 Film Oxidation and Electropolishing 2.4.3 Oxygen Evolution and High-Rate Transpassive Dissolution 2.5 Anodic Reaction Stoichiometry References Chapter 3 Transpassive Films and Their Breakdown under ECM Conditions 3.1 Introduction 3.2 Factors Influencing Transpassive Dissolution 3.3 Microscopic Investigation of Transpassive Film Breakdown 3.4 AES/XPS Studies of Transpassive Films on Ni and Fe 3.4.1 Transpassive Films on Nickel 3.4.2 Transpassive Films on Iron 3.5 Transpassive Dissolution Mechanism References Chapter 4 Mass Transport and Current Distribution 4.1 Introduction 4.2 Mass Transport 4.2.1 Convective Diffusion 4.2.2 Anodic Limiting Current 4.2.3 Mass Transport in Pulsating Current Dissolution 4.3 Current Distribution 4.4 Experimental Tools for the Investigation of High-Rate Anodic Dissolution Processes 4.4.1 Rotating Disk Electrode 4.4.2 Flow Channel Cell Appendix References Chapter 5 High-Rate Anodic Dissolution of Fe, Ni, Cr, and Their Alloys 5.1 Introduction 5.2 Iron and Nickel in Chloride Electrolytes 5.3 Iron and Nickel in Nitrate Electrolytes 5.4 Iron and Nickel in Chlorate Electrolytes 5.5 FeCr Alloys in Chloride and Nitrate Electrolytes 5.6 Mass Transport-Controlled Salt Film Formation 5.7 Pulsed Dissolution 5.8 Influence of Metallurgical Factors 5.8.1 Pitting and Grain Boundary Attack 5.8.2 Flow Streak Formation References Chapter 6 High-Rate Anodic Dissolution of Ti, W, and Their Carbides 6.1 Introduction 6.2 High-Rate Anodic Dissolution of Titanium 6.2.1 Anodic Behavior of Ti 6.2.2 High-Rate Anodic Dissolution of Titanium and Titanium Alloys under ECM Conditions 6.3 High-Rate Anodic Dissolution of Tungsten 6.3.1 Anodic Behavior of Tungsten 6.3.2 High-Rate Anodic Dissolution of Tungsten under ECM Conditions 6.4 High-Rate Anodic Dissolution of Carbides of Ti and W 6.4.1 Anodic Behavior of Ti and W Carbides 6.4.2 High-Rate Anodic Dissolution of TiC, WC, and Hardmetals under ECM Conditions References Chapter 7 Anodic Dissolution of Metals in Electropolishing Electrolytes 7.1 Introduction 7.2 Electropolishing of Selected Metals and Alloys: Rate-Controlling Species 7.2.1 Copper 7.2.2 Fe, Cr, and Their Alloys 7.2.2.1 Fe 7.2.2.2 Cr and FeCr Alloys 7.2.3 Ti and NiTi Alloys 7.2.3.1 Titanium 7.2.3.2 NiTi (Shape Memory Alloy) 7.2.4 Niobium 7.3 Current Oscillations 7.4 Transport Mechanism of Electropolishing References Chapter 8 Electrochemical Machining 8.1 Introduction 8.2 ECM Reactions 8.3 Process Description 8.3.1 ECM Equipment 8.3.2 ECM Electrolytes 8.3.3 The Interelectrode Gap 8.3.4 Process Monitoring and Control 8.4 Current Efficiency and Metal Removal Rate 8.5 Mass Transport and Surface Finish 8.6 Machining Accuracy 8.6.1 Passivating Electrolytes 8.6.2 Pulse ECM 8.6.3 Other Methods 8.7 Shape Prediction and Tool Design 8.8 ECM Techniques and Applications 8.8.1 Die Sinking and Combined Tool Machining 8.8.2 Electrochemical Drilling 8.8.3 Electrochemical Deburring 8.9 Assisted ECM 8.9.1 Electrochemical Grinding 8.9.2 Ultrasonic-Assisted ECM 8.9.3 Ultrasonic-Assisted ECG 8.9.4 Electrochemical Honing 8.10 Environmental and Safety Issues References Chapter 9 Electrochemical Micromachining: Maskless Techniques 9.1 Introduction 9.2 Jet Electrochemical Micromachining 9.3 Electrochemical Microdrilling 9.4 Wire Electrochemical Micromachining 9.5 Assisted Electrochemical Micromachining 9.5.1 Laser-Assisted Jet Electrochemical Micromachining 9.5.2 Vibration/Ultrasonic-Assisted Wire Electrochemical Micromachining 9.5.3 Abrasive-Assisted Jet Electrochemical Micromachining 9.6 EMM Case Studies 9.6.1 Wire Electrochemical Micromachining of Aluminum Rings for the Fabrication of Corrugated Horns 9.6.2 Electrochemical Saw Using Pulsating Voltage References Chapter 10 Through-Mask Electrochemical Micromachining 10.1 Introduction 10.2 Photoresist and Lithography 10.3 Mass Transport in a Cavity 10.4 Shape Evolution Modeling 10.5 TMEMM Challenges 10.5.1 Uniformity Considerations 10.5.2 Anisotropy Considerations 10.5.3 Island-Formation Issues in One-Sided TMEMM 10.6 TMEMM Tools 10.6.1 One-Sided TMEMM Tool 10.6.2 Two-Sided TMEMM Tool 10.6.3 Precision Electroetching Tool for Semiconductor Processing 10.7 TMEMM Applications: Case Studies 10.7.1 Fabrication of Ink-Jet Nozzle Plates 10.7.2 Fabrication of Cone Connectors 10.7.3 Fabrication of Metal Masks 10.7.4 TMEMM of Titanium for Biological Applications 10.7.5 TMEMM of Titanium Using Laser Patterned Oxide Film Masks References Chapter 11 Electropolishing in Practice 11.1 Introduction 11.2 Electropolishing Process Description 11.2.1 Operating Conditions 11.2.2 Monitoring and Control 11.2.3 Surface Evaluation 11.2.4 Quality Control 11.2.5 Environmental Issues 11.3 Applications 11.4 Case Studies 11.4.1 Electropolishing of Nitinol Stents 11.4.2 Fabrication of STM Probes 11.4.3 Electropolishing of Print Bands 11.5 Assisted Electropolishing 11.5.1 Magneto-Electropolishing 11.5.2 Plasma Electropolishing 11.5.3 Pulse and Pulse Reverse Electropolishing References Chapter 12 Electrochemical Planarization of Copper Interconnects 12.1 Introduction 12.2 Planarization by Electropolishing 12.2.1 Electropolishing Mechanism 12.2.2 Planarization Issues 12.3 Planarization by Electrochemical and Mechanical Actions 12.3.1 Electrochemical Mechanical Deposition 12.3.2 Electrochemical Mechanical Planarization 12.3.2.1 Mechanical Factors 12.3.2.2 Electrolyte Composition 12.4 Removal of the Barrier Layer 12.5 Summary and Final Remarks References Index