ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Electrode Materials for Energy Storage and Conversion

دانلود کتاب مواد الکترود برای ذخیره و تبدیل انرژی

Electrode Materials for Energy Storage and Conversion

مشخصات کتاب

Electrode Materials for Energy Storage and Conversion

ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0367697904, 9780367697907 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 517 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Electrode Materials for Energy Storage and Conversion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد الکترود برای ذخیره و تبدیل انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد الکترود برای ذخیره و تبدیل انرژی



این کتاب مروری جامع بر آخرین پیشرفت‌ها و مواد مورد استفاده در دستگاه‌های ذخیره و تبدیل انرژی الکتروشیمیایی، از جمله باتری‌های لیتیوم یون، باتری‌های یون سدیم، باتری‌های یون روی، ابرخازن‌ها و مواد تبدیلی برای سلول‌های خورشیدی و سوختی ارائه می‌دهد. فصل‌ها به معرفی فناوری‌های پشت هر ماده، علاوه بر اصول اساسی دستگاه‌ها و تأثیر و سهم گسترده‌تر آن‌ها در این زمینه می‌پردازند. این کتاب یک مرجع ایده‌آل برای محققان و افرادی خواهد بود که در صنایع مبتنی بر فناوری‌های ذخیره و تبدیل انرژی در فیزیک، شیمی و مهندسی کار می‌کنند.

ویژگی‌ها

  • ویرایش شده توسط مقامات معتبر، با کمک های فصلی از متخصصان حوزه موضوعی
  • مروری جامع از این زمینه ارائه می دهد
  • به روز با آخرین پیشرفت ها و تحقیقات

ویراستاران

Dr. Mesfin A. Kebede دکترای خود را در رشته مهندسی متالورژی از دانشگاه Inha، کره جنوبی اخذ کرد. او اکنون یک دانشمند پژوهشی اصلی در مرکز انرژی شورای تحقیقات علمی و صنعتی (CSIR)، آفریقای جنوبی است. او قبلاً استادیار گروه فیزیک کاربردی و علوم مواد در دانشگاه هاواسا، اتیوپی بود. تجربه تحقیقاتی گسترده او استفاده از مواد الکترود برای ذخیره انرژی و تبدیل انرژی را پوشش می دهد.

پروفسور. Fabian I. Ezema استاد دانشگاه نیجریه، Nsukka است. او دکترای خود را در رشته فیزیک و نجوم از دانشگاه نیجریه، نسوکا گرفت. تحقیقات او بر چندین حوزه علم مواد با تأکید بر کاربردهای انرژی، به ویژه مواد الکترود برای تبدیل و ذخیره انرژی متمرکز است.


توضیحاتی درمورد کتاب به خارجی

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering.

FEATURES

  • Edited by established authorities, with chapter contributions from subject-area specialists
  • Provides a comprehensive review of the field
  • Up to date with the latest developments and research

Editors

Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion.

Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Foreword
Preface
Editors
Contributors
1. Lithium-Ion Batteries: From the Materials' Perspective
	1.1 Introduction
	1.2 Brief History of Lithium-Ion Battery Materials
	1.3 Lithium-Ion Battery and Its Principle of Operation
	1.4 Li-Ion Battery Component Materials
		1.4.1 Li-Ion Battery Anode Materials, Characteristics, Advantages, and Limitations
			1.4.1.1 Lithium Metal
			1.4.1.2 Intercalative Anode Materials
				1.4.1.2.1 Carbon-Based Anode Materials
				1.4.1.2.2 Titanium-Based Anodes
			1.4.1.3 Alloying Anode Materials
				1.4.1.3.1 Si Alloy Anode Material
				1.4.1.3.2 Tin-Based Alloy Anodes
			1.3.1.4 Conversion-Type Anode Materials
	1.5 Li-ion Battery Cathode Materials, Characteristics, Advantages, and Limitations
		1.5.1 Layered Transition Metal Oxides Cathode Material
			1.5.1.1 Lithium Cobalt Oxides (LiCoO2)
			1.5.1.2 LiMn2O4 Cathode Material
		1.5.2 Olivine Transition Metal Phosphates (LiFePO4) Cathode Material
		1.5.3 Fluoride-Based Compounds
		1.5.4 Polyanionic Compound Cathode Material
		1.5.5 Other Transition Metal Oxide Cathode Materials
			1.5.5.1 Vanadium-Based Cathode Materials
			1.5.5.2 Advanced/Green Cathode Materials
	1.6 Li-Ion Battery Electrolyte and Separator Materials
		1.6.1 Li-Ion Battery Electrolyte Materials
		1.6.2 Li-Ion Battery Separator Materials
		1.6.3 Other Li-Ion Battery Materials - Conductive Additives, Current Collector, and Binder
	1.7 Synthesis and Characterization of Li-Ion Battery Electrode Materials
	1.8 Li-Ion Battery Manufacturing
		1.8.1 Slurry Preparation
		1.8.2 Coating and Drying
		1.8.3 Calendaring
		1.8.4 Cutting of Electrodes
		1.8.5 Cell Assembly
		1.8.6 Electrolyte Filling and Formation
	1.9 Conclusion and Future Trends
	Acknowledgements
	References
2. Carbon Derivatives in Performance Improvement of Lithium-Ion Battery Electrodes
	2.1 Introduction
	2.2 Battery
		2.2.1 LIB Components and Mechanisms of Operation
	2.3 LIB Electrodes Materials
	2.4 Anode Materials
		2.4.1 Carbonaceous Materials
		2.4.2 Transition Metal Oxides
		2.4.3 Polyanions
		2.4.4 Metalloid/Metal Materials
	2.5 Cathode Materials
		2.5.1 Spinel Oxides
		2.5.2 Phosphates
		2.5.3 Silicates
		2.5.4 Borates and Tavorites
	2.6 Conclusion
	Acknowledgements
	References
3. Current Status and Trends in Spinel Cathode Materials for Lithium-Ion Battery
	3.1 Introduction
	3.2 Spinel LiMn2O4 and LiMn1.5Ni0.5O4 Cathode Materials
		3.2.1 Spinel LiMn2O4 (LMO)
			3.2.1.1 Substitution of Mn-Ion by Transition Metal Ions
			3.2.1.2 The Control of Morphology
		3.2.2 LiMn1.5Ni0.5O4 (LMNO)
			3.2.2.1 X-Ray Powder and Neutron Powder Diffraction for LiMn1.5Ni0.5O4 Cathodes
	3.3 Conclusion
	References
4. Zinc Anode in Hydrodynamically Enhanced Aqueous Battery Systems
	4.1 Introduction
	4.2 Zinc Anode in Still-Aqueous Electrolyte: The Modus Operandi
		4.2.1 The Conventional Zinc-Ion Batteries (ZIBs)
			4.2.1.1 Zinc Anode
			4.2.1.2 Cathode
			4.2.1.3 Electrolyte
		4.2.2 Storage Mechanisms of Aqueous Zinc-Ion Batteries
			4.2.2.1 Insertion/Extraction of Zn2+ Reaction
			4.2.2.2 Dual Ion Co-Insertion/Extraction
			4.2.2.3 Chemical Conversion Reaction
		4.2.3 Challenges Facing Batteries Utilizing Zinc Anode in Still-Electrolytes
			4.2.3.1 Dendrite Formation
			4.2.3.2 Zinc Corrosion
			4.2.3.3 Passivation
			4.2.3.4 Hydrogen Evolution Reaction (HER)
	4.3 Optimization of the Performances of Zinc Anode Battery Systems
		4.3.1 Structural Design towards High-Performing Zinc Anode
		4.3.2 Interfacial Modification between the Anode and Electrolyte
		4.3.3 The Use of Electrolyte Additives
		4.3.4 Incorporation of Hydrodynamics into Zinc-Ion Battery System
	4.4 Types of Flow Batteries Utilizing Zn Anode and Their Performances
		4.4.1 Types of Zinc Flow Batteries
			4.4.1.1 Zinc-Bromine Flow Battery
			4.4.1.2 Zinc-Nickel Flow Battery
			4.4.1.3 Zinc-Iron Flow Battery
			4.4.1.4 Zinc-Air Flow Battery
		4.4.2 Performances of Zinc Flow Batteries
	4.5 Areas Where Zinc Flow Batteries Have Been Applied
		4.5.1 Power Quality Control
		4.5.2 Incorporating with Renewable Energy Sources
		4.5.3 Electric Vehicles (EVs)
	4.6 Summary and Future Perspectives
	References
5. Advanced Materials for Energy Storage Devices
	5.1 General Introduction
	5.2 Supercapacitors
		5.2.1 Classifications of Supercapacitors
		5.2.2 Electrolyte for Supercapacitor
		5.2.3 Advanced Electrode Materials for Supercapacitor
	5.3 Li-Ion Capacitors
		5.3.1 Electrolyte for LICs
		5.3.2 Recently Developed Electrode Materials for LICs
	5.4 Battery
		5.4.1 Lithium-Ion Batteries (LIBs)
			5.4.1.1 Electrolyte for LIBs
			5.4.1.2 Electrode Materials of Current Interest for LIBs
		5.4.2 Sodium-Ion Batteries (SIBs)
			5.4.2.1 Rationale of SIBs for Energy Storage
			5.4.2.2 Physical Principles of SIBs
			5.4.2.3 Electrolytes Materials for SIBs
			5.4.2.4 Electrode Materials for SIBs
	5.5 Summary and Future Prospects
	References
6. Li6PS5X (X = Cl, Br, or I): A Family of Li-Rich Inorganic Solid Electrolytes for All-Solid-State Battery
	6.1 Introduction
	6.2 History of Solid-State Batteries
	6.3 Mechanism of Ion Transport in Solid Electrolytes
	6.4 Sulphide-Based Solid Electrolytes
	6.5 Persisting Challenges Encountered and Possible Solution
		6.5.1 Physical Contact between Electrolyte and Electrodes
		6.5.2 Electrochemical Interfacial Reactions
		6.5.3 Cathode Active Material/TSE Interface
			6.5.3.1 Intercalation Cathode/TSE Interface
			6.5.3.2 Conversion Cathode/TSEs Interface
		6.5.4 Li-Metal Anode/TSEs Interface
		6.5.5 Lithium Dendrites and Li-Metal Protection
	6.6 Fundamentals of Argyrodite Electrolyte
	6.7 Argyrodites for ASSBs
		6.7.1 Argyrodite with X = Cl (Li6PS5Cl)
		6.7.2 Argyrodite with X = Br (Li6PS5Br)
		6.7.3 Argyrodite with X = I (Li6PS5I)
	6.8 Conclusions and Perspectives
	Acknowledgements
	References
7. Recent Advances in Usage of Cobalt Oxide Nanomaterials as Electrode Material for Supercapacitors
	7.1 Introduction
	7.2 Theoretical Overview of Supercapacitors
		7.2.1 Supercapacitor Performance
	7.3 Electrode Materials
	7.4 Synthesis and Performance of Co3O4
		7.4.1 Coprecipitation Method
		7.4.2 Hydrothermal Method
		7.4.3 Sol Gel Method
		7.4.4 Chemical Bath Deposition Method (CBD)
		7.4.5 Electrodeposition
	7.5 Co3O4-Based Nanocomposites
		7.5.1 Co3O4/Carbon Composites
		7.5.2 Co3O4/Graphene Composites
		7.5.3 Cobalt Oxide (Co3O4)/Conducting Polymer
	7.6 Conclusion
	Acknowledgements
	References
8. Recent Developments in Metal Ferrite Materials for Supercapacitor Applications
	8.1 Introduction
		8.1.1 Forms of Energy
	8.2 Electrochemical Energy Storage Systems
	8.3 Metal Ferrite for Supercapacitor Applications
	8.4 Manganese Ferrite
	8.5 Cobalt Ferrite
	8.6 Copper Ferrite
	8.7 Nickel Ferrite
	8.8 Conclusion
	Acknowledgements
	References
9. Advances in Nickel-Derived Metal-Organic Framework-Based Electrodes for High-Performance Supercapacitor
	9.1 Introduction
	9.2 Methods of Synthesizing MOF-Based Supercapacitor
		9.2.1 Powder Preparation
			9.2.1.1 Direct Powder Synthesis
			9.2.1.2 Powder Synthesis Using MOF-Template
		9.2.2 Device Assembly
			9.2.2.1 Deposition
	9.3 Advances and Optimizations in Ni-Based MOF Supercapacitor
		9.3.1 Pristine Ni-Based MOFs
		9.3.2 Derived Ni-Based MOFs/Composites
			9.3.2.1 Metal Oxide/Hydroxide
			9.3.2.2 Mixed Metal (Bimetallic/Ternary) MOFs
		9.3.3 Hybrid Ni-MOF Supercapacitors
	9.4 Challenges
	9.5 The Future of MOF-Based Energy Supercapacitor
	References
10. The Place of Biomass-Based Electrode Materials in Next-Generation Energy Conversion and Storage
	10.1 Introduction
	10.2 Biomass and Its Carbon Derivations
		10.2.1 Biomass Reserve
		10.2.2 Methods of Carbon Derivation from Biomass
			10.2.2.1 Pyrolysis
			10.2.2.2 Activation
			10.2.2.3 Hydrothermal Carbonization
			10.2.2.4 Functionalization of Hydrothermal Carbons
	10.3 Applications of Biomass-Based Electrode Materials
		10.3.1 Applications in Fuel Cells
			10.3.1.1 Electrocatalytic Alcohol Oxidation and Oxygen Reduction Reaction
		10.3.2 Applications in Li Batteries
		10.3.3 Applications in Supercapacitors
		10.3.4 Advantages of Biomass-Based Electrode Materials over Other Sources
		10.3.5 The Place of Biomass-Based Electrode Materials in Next-Generation Energy Conversion and Storage
	10.4 Conclusion and Future Outlooks
	Acknowledgements
	References
11. Synthesis and Electrochemical Properties of Graphene
	11.1 Introduction
	11.2 Nanostructures of Carbon
	11.3 Graphene Layer, Graphene Oxide (GO), and Reduced Graphene Oxide (rGO) Synthesis
	11.4 Electrochemical Applications of Graphene and Reduced Graphene Oxide
		11.4.1 Graphene-Based Electrode Materials for Supercapacitors
		11.4.2 Graphene-Based Battery Electrodes
		11.4.3 Innovative Features Associated with Graphene Electroactive Material
	11.5 Conclusion
	Acknowledgements
	References
12. Dual Performance of Fuel Cells as Efficient Energy Harvesting and Storage Systems
	12.1 Introduction
	12.2 Working Principle of Fuel Cells
	12.3 Advantages and Disadvantages of Fuel Cells
	12.4 Classifications of Fuel Cells
		12.4.1 Alkaline Fuel Cells (AFCs)
		12.4.2 Proton Exchange Membrane Fuel Cells (PEMFCs)
		12.4.3 Direct Methanol Fuel Cells (DMFCs)
		12.4.4 Microbial Fuel Cells (MFCs)
		12.4.5 Polymer Electrolyte Fuel Cells (PEFCs)
		12.4.6 Photocatalytic Fuel Cells (PFCs)
		12.4.7 Solid Acid Fuel Cells (SAFCs)
		12.4.8 Phosphoric Acid Fuel Cells (PAFCs)
		12.4.9 Molten Carbonate Fuel Cells (MCFCs)
	12.5 Dual Functions of Fuel Cells
		12.5.1 Fuel Cells as Energy Harvesters
		12.5.2 Fuel Cells as Energy Storage Systems
	12.6 Conclusion
	References
13. The Potential Role of Electrocatalysts in Electrofuel Generation and Fuel Cell Application
	13.1 Introduction and Background
	13.2 Electrofuels and Pathways: Power-to-x
		13.2.1 Power-to-Hydrogen (H2): H2-Based Synthetic Fuel
		13.2.2 Power to Liquid Fuels (Methanol and Ethanol): C1-C2-Based Synthetic Fuels Using Solid Oxide Electrolysis Cell
	13.3 Nanomaterials and Nanotechnology
		13.3.1 Preparation of AC and Pd-Based Nanocatalysts
		13.3.2 Application of the Green Prepared Nanocatalysts: MEA Fabrication and Cell Performance Tests
	13.4 Application of the Nanomaterials Electrocatalysts for Energy Conversion: Carbon Dioxide Reduction
	13.5 Conclusion and Recommendations
		13.5.1 Recommendations
	Acknowledgements
	References
14. Reliability Study of Solar Photovoltaic Systems for Long-Term Use
	14.1 Introduction
	14.2 PV Technology Description
	14.3 Different Technologies Used in PV Systems
		14.3.1 Crystalline Silicon
		14.3.2 Cadmium Telluride (CdTe)
		14.3.3 Copper Indium Selenide (CIS)
		14.3.4 Copper Indium Gallium Diselenide (CIGS)
	14.4 Performance Analysis of PV Modules
	14.5 Degradation Analysis of PV Modules
	14.6 Failure Mode and Effect Analysis (FMEA) for PV Systems
	14.7 Conclusions and Future Projections
	References
15. Physical Methods to Fabricate TiO2 QDs for Optoelectronics Applications
	15.1 Introduction
	15.2 Device Fabrication
		15.2.1 Solar Cell
			15.2.1.1 Organic Solar Cell (OSC)
			15.2.1.2 Inorganic Solar Cell
			15.2.1.3 Perovskite Solar Cell
		15.2.2 Memory Devices
		15.2.3 Transistor Devices
		15.2.4 Gas Sensor
	15.3 Characterization Technique
	15.4 Structural, Optical, and Electrical Properties of TiO2 QDs
	15.5 Mechanism of TiO2 QD Formation
	15.6 Challenges and Possible Enhancement of TiO2 QD-Based Device
	15.7 Feature Scope
	15.8 Conclusion
	References
16. Chemical Spray Pyrolysis Method to Fabricate CdO Thin Films for TCO Applications
	16.1 Introduction
	16.2 Application of TCOs
	16.3 Experimental Details
	16.4 Results and Discussion
		16.4.1 XRD and Surface Morphology Studies
		16.4.2 Optical Studies
		16.4.3 Non-linear Optical Studies
			16.4.3.1 Physical Mechanisms of Optical Non-Linearities in Undoped CdO Thin Films
			16.4.3.2 Non-linear Refraction
			16.4.3.3 Non-linear Absorption
		16.4.4 Electrical Studies
	16.5 Conclusion
	References
17. Photovoltaic Characteristics and Applications
	17.1 Introduction
	17.2 Semiconductors
	17.3 The P-n Junctions
	17.4 Materials Used for the Construction of Photovoltaic Cells
	17.5 Photovoltaic Panel or Module
	17.6 Types of Photovoltaic Panels
		17.6.1 Classification based on Materials and Manufacturing Methods
			17.6.1.1 Gallium Arsenide
			17.6.1.2 Cadmium Telluride
			17.6.1.3 Copper Indium diselenide
			17.6.1.4 Perovskite Materials
			17.6.1.5 Organic/polymer Materials
			17.6.1.6 Quantum dots
			17.6.1.7 Dye-sensitized Materials
		17.6.2 Classification based on final shape
			17.6.2.1 Monocrystalline Panels
			17.6.2.2 Polycrystalline Panels
			17.6.2.3 Amorphous Panels
			17.6.2.4 Amorphous Silicon Panels
			17.6.2.5 Tandem Panels
	17.7 Factors Influencing Conversion Performance
	17.8 Factors Affecting the Performance of Photovoltaic Panels
	17.9 Ways of Regulating the Variables That Affect the PV Panel's Performance
	17.10 Conclusion
	References
18. Comparative Study of Different Dopants on the Structural and Optical Properties of Chemically Deposited Antimony Sulphide Thin Films
	18.1 Introduction
	18.2 Materials and Methods
		18.2.1 Materials
		18.2.2 Method
		18.2.3 Growth Mechanism of CuSb2 Thin Films
	18.3 Results and Discussion
		18.3.1 Structural Analysis
		18.3.2 Optical Analysis
	18.4 Conclusion
	References
19. Research Progress in Synthesis and Electrochemical Performance of Bismuth Oxide
	19.1 Introduction
	19.2 Phases and Properties
	19.3 Synthesis Methods
	19.4 Applications
		19.4.1 Energy Storage
		19.4.2 Bi2O3-Based Composite Electrodes
		19.4.3 Bi2O3-Based Battery Electrodes
	19.5 Conclusion
	References
20. Earth-Abundant Materials for Solar Cell Applications
	20.1 Basic Concepts of Earth-Abundant Materials
	20.2 Some Earth-Abundant Solar Cell Materials
		20.2.1 Manganese
		20.2.2 Iron
		20.2.3 Nickel
		20.2.4 Sulphur
		20.2.5 Tin
		20.2.6 Barium
		20.2.7 Chalcogenides
		20.2.8 Metallic Sulphides
		20.2.9 Quaternary Compounds
	20.3 Synthesis Methods of Earth-Abundant Materials
		20.3.1 Plasma-Assisted Techniques
		20.3.2 Chemical Vapour Deposition (CVD)
		20.3.3 Sputtering
		20.3.4 Electrochemical Deposition (ECD)
		20.3.5 Successive Ionic Layer Adsorption and Reaction (SILAR)
		20.3.6 Chemical Synthesis
		20.3.7 Sulphurization Technique
		20.3.8 Sol-Gel Method
		20.3.9 Spray pyrolysis
		20.3.10 Thermal evaporation
	20.4 Conclusion
	References
21. New Perovskite Materials for Solar Cell Applications
	21.1 Introduction of Perovskite Solar Cells
	21.2 Organic-Inorganic Perovskite Materials
		21.2.1 Methylammonium Lead Halide, CH3NH3PbX3
		21.2.2 Methylammonium Tin Halide, CH3NH3SnX3
	21.3 Chalcogenide Perovskite Materials
		21.3.1 Cesium Lead Iodide, CsPbI3
		21.3.2 Barium Zirconium Sulphide, BaZrS3
	21.4 Double Perovskite Oxides (DPOs)
	21.5 Lead-Free Perovskites
	21.6 Conclusion and Future Perspectives
	References
22. The Application of Carbon and Graphene Quantum Dots to Emerging Optoelectronic Devices
	22.1 Introduction
	22.2 Graphite
	22.3 Device Fabrication
		22.3.1 Dye-sensitized Solar Cell (DSSC)
		22.3.2 Electrochemical Energy Storage System
			22.3.2.1 Electrochemical Battery
			22.3.2.2 Electrochemical Capacitor
		22.3.3 MIMO for LTE and 5G Antenna
		22.3.4 Transistor Devices
	22.4 Structural, Optical, and Electronic Properties of CDs and GQDs
	22.5 Characterization Technique of CDs and GQDs
	22.6 Synthesis of CDs and GQDs
		22.6.1 Bottom-Up
			22.6.1.1 Hydrothermal/Solvothermal Technique
			22.6.1.2 Microwave Irradiation Technique
		22.6.2 Top-Down
			22.6.2.1 Chemical Oxidation Technique
			22.6.2.2 Thermal (Vacuum) Evaporation
	22.7 Conclusion
	References
23. Solar Cell Technology: Challenges and Progress
	23.1 Introduction
	23.2 First-Generation Solar Cells: Crystalline Silicon Solar Cells
		23.2.1 Back-Surface Field Solar cells
		23.2.2 High-Efficiency cells
			23.2.2.1 Passivated Emitted and Rear Cell and Passivated Emitted Rear Locally Diffused Cell
			23.2.2.2 PERT, TOPCon, and Bifacial Cells
			23.2.2.3 Inter-Digitated Back Contact Cell
			23.2.2.4 Heterojunction Solar Cells
	23.3 Second-Generation Solar Cells: Thin-Film Silicon Solar Cells
		23.3.1 Amorphous Silicon (a-Si) and Microcrystalline Silicon (mc-Si)
			Advance and Challenges in a-Si Thin-Film Solar Cells
		23.3.2 Cadmium Telluride (CdTe) Thin-Film Solar Cells
			23.3.2.1 Advances and Challenges in CdTe Thin-Film Solar Cells
		23.3.3 Copper-Indium-Gallium-Diselenide (CIGS)
			23.3.3.1 Advances and Challenges of CIGS Thin-Film Solar Cells
	23.4 Third-Generation Solar Cells: Emerging Solar Cell Technologies
		23.4.1 Polymer Solar Cells
			23.4.1.1 Origin of the Electrical Conductivity and Band Gap in Conjugated Polymers
			23.4.1.2 Working Principle of Organic Solar Cells and Efficiency Limiting Factors
			23.4.1.3 The Bulk Heterojunction Concept
			23.4.1.4 Morphology of Active Layer of BHJ Organic Solar Cells
			23.4.1.5 Advances and Challenges in Organic Solar Cells
			23.4.1.6 Stability: Challenges of Organic Solar Cells
				23.4.1.6.1 Factors Affecting Stability of OSCs
				23.4.1.6.2 Mechanism to Improve Stability of OSCs
		23.4.2 Perovskite Solar Cells
			23.4.2.1 Evolution of Perovskite Solar Cells Device Structure
				23.4.2.1.1 Liquid Electrolyte Dye-Sensitized Solar Cells
				23.4.2.1.2 Solid-State PSCs with Mesoporous TiO2 Scaffold
				23.4.2.1.3 Meso-Superstructured PCSs Based on Non-Injecting Oxides
				23.4.2.1.4 Planar Heterojunction
			23.4.2.2 Progress in Fabrication Techniques and Stability Of PSCs
			23.4.2.3 Stability of Perovskite Solar Cells: Challenge to Commercialization
	23.5 Future Outlooks
	References
24. Stannate Materials for Solar Energy Applications
	24.1 Introduction
	24.2 Solar Energy Harvesting
	24.3 Solar Energy Harvesting and Photovoltaic (PV) Cells (Solar Cells)
	24.4 Current Technology
	24.5 Types of Solar Cells
		24.5.1 Semiconductor Solar Cells
		24.5.2 Dye-Sensitized Solar Cells
		24.5.3 Perovskite Solar Cells (PSCs)
		24.5.4 Spinel Oxide Solar Cells
	24.6 Crystal Structures of Spinels and Perovskites Stannates
		24.6.1 Crystal Structures: Spinel
		24.6.2 Crystal Structure: Perovskite
		24.6.3 Band Structure
	24.7 Doped Stannates
	24.8 Peculiarities/Properties of the Stannates
		24.8.1 Barium Stannate (Barium Stannic Oxide), Barium Tin Oxide BaSnO3 (or BSO)
		24.8.2 Strontium Stannate (Strontium Stannic Oxide), (Strontium Tin Oxide), SrSnO3 (SSO)
		24.8.3 Zinc Stannate or Zinc Stannic Oxide (ZSO) or Zinc Tin Oxide (ZTO)
	24.9 Methods of Synthesis
		24.9.1 Thin Films
		24.9.2 Metal Oxide Thin Films
	24.10 Conclusion
	References
Index




نظرات کاربران