دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mesfin A. Kebede (editor), Fabian I. Ezema (editor) سری: ISBN (شابک) : 0367697904, 9780367697907 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 517 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Electrode Materials for Energy Storage and Conversion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد الکترود برای ذخیره و تبدیل انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری جامع بر آخرین پیشرفتها و مواد مورد استفاده در دستگاههای ذخیره و تبدیل انرژی الکتروشیمیایی، از جمله باتریهای لیتیوم یون، باتریهای یون سدیم، باتریهای یون روی، ابرخازنها و مواد تبدیلی برای سلولهای خورشیدی و سوختی ارائه میدهد. فصلها به معرفی فناوریهای پشت هر ماده، علاوه بر اصول اساسی دستگاهها و تأثیر و سهم گستردهتر آنها در این زمینه میپردازند. این کتاب یک مرجع ایدهآل برای محققان و افرادی خواهد بود که در صنایع مبتنی بر فناوریهای ذخیره و تبدیل انرژی در فیزیک، شیمی و مهندسی کار میکنند.
ویژگیها
ویراستاران
Dr. Mesfin A. Kebede دکترای خود را در رشته مهندسی متالورژی از دانشگاه Inha، کره جنوبی اخذ کرد. او اکنون یک دانشمند پژوهشی اصلی در مرکز انرژی شورای تحقیقات علمی و صنعتی (CSIR)، آفریقای جنوبی است. او قبلاً استادیار گروه فیزیک کاربردی و علوم مواد در دانشگاه هاواسا، اتیوپی بود. تجربه تحقیقاتی گسترده او استفاده از مواد الکترود برای ذخیره انرژی و تبدیل انرژی را پوشش می دهد.
پروفسور. Fabian I. Ezema استاد دانشگاه نیجریه، Nsukka است. او دکترای خود را در رشته فیزیک و نجوم از دانشگاه نیجریه، نسوکا گرفت. تحقیقات او بر چندین حوزه علم مواد با تأکید بر کاربردهای انرژی، به ویژه مواد الکترود برای تبدیل و ذخیره انرژی متمرکز است.
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering.
FEATURES
Editors
Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion.
Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Cover Half Title Title Page Copyright Page Contents Foreword Preface Editors Contributors 1. Lithium-Ion Batteries: From the Materials' Perspective 1.1 Introduction 1.2 Brief History of Lithium-Ion Battery Materials 1.3 Lithium-Ion Battery and Its Principle of Operation 1.4 Li-Ion Battery Component Materials 1.4.1 Li-Ion Battery Anode Materials, Characteristics, Advantages, and Limitations 1.4.1.1 Lithium Metal 1.4.1.2 Intercalative Anode Materials 1.4.1.2.1 Carbon-Based Anode Materials 1.4.1.2.2 Titanium-Based Anodes 1.4.1.3 Alloying Anode Materials 1.4.1.3.1 Si Alloy Anode Material 1.4.1.3.2 Tin-Based Alloy Anodes 1.3.1.4 Conversion-Type Anode Materials 1.5 Li-ion Battery Cathode Materials, Characteristics, Advantages, and Limitations 1.5.1 Layered Transition Metal Oxides Cathode Material 1.5.1.1 Lithium Cobalt Oxides (LiCoO2) 1.5.1.2 LiMn2O4 Cathode Material 1.5.2 Olivine Transition Metal Phosphates (LiFePO4) Cathode Material 1.5.3 Fluoride-Based Compounds 1.5.4 Polyanionic Compound Cathode Material 1.5.5 Other Transition Metal Oxide Cathode Materials 1.5.5.1 Vanadium-Based Cathode Materials 1.5.5.2 Advanced/Green Cathode Materials 1.6 Li-Ion Battery Electrolyte and Separator Materials 1.6.1 Li-Ion Battery Electrolyte Materials 1.6.2 Li-Ion Battery Separator Materials 1.6.3 Other Li-Ion Battery Materials - Conductive Additives, Current Collector, and Binder 1.7 Synthesis and Characterization of Li-Ion Battery Electrode Materials 1.8 Li-Ion Battery Manufacturing 1.8.1 Slurry Preparation 1.8.2 Coating and Drying 1.8.3 Calendaring 1.8.4 Cutting of Electrodes 1.8.5 Cell Assembly 1.8.6 Electrolyte Filling and Formation 1.9 Conclusion and Future Trends Acknowledgements References 2. Carbon Derivatives in Performance Improvement of Lithium-Ion Battery Electrodes 2.1 Introduction 2.2 Battery 2.2.1 LIB Components and Mechanisms of Operation 2.3 LIB Electrodes Materials 2.4 Anode Materials 2.4.1 Carbonaceous Materials 2.4.2 Transition Metal Oxides 2.4.3 Polyanions 2.4.4 Metalloid/Metal Materials 2.5 Cathode Materials 2.5.1 Spinel Oxides 2.5.2 Phosphates 2.5.3 Silicates 2.5.4 Borates and Tavorites 2.6 Conclusion Acknowledgements References 3. Current Status and Trends in Spinel Cathode Materials for Lithium-Ion Battery 3.1 Introduction 3.2 Spinel LiMn2O4 and LiMn1.5Ni0.5O4 Cathode Materials 3.2.1 Spinel LiMn2O4 (LMO) 3.2.1.1 Substitution of Mn-Ion by Transition Metal Ions 3.2.1.2 The Control of Morphology 3.2.2 LiMn1.5Ni0.5O4 (LMNO) 3.2.2.1 X-Ray Powder and Neutron Powder Diffraction for LiMn1.5Ni0.5O4 Cathodes 3.3 Conclusion References 4. Zinc Anode in Hydrodynamically Enhanced Aqueous Battery Systems 4.1 Introduction 4.2 Zinc Anode in Still-Aqueous Electrolyte: The Modus Operandi 4.2.1 The Conventional Zinc-Ion Batteries (ZIBs) 4.2.1.1 Zinc Anode 4.2.1.2 Cathode 4.2.1.3 Electrolyte 4.2.2 Storage Mechanisms of Aqueous Zinc-Ion Batteries 4.2.2.1 Insertion/Extraction of Zn2+ Reaction 4.2.2.2 Dual Ion Co-Insertion/Extraction 4.2.2.3 Chemical Conversion Reaction 4.2.3 Challenges Facing Batteries Utilizing Zinc Anode in Still-Electrolytes 4.2.3.1 Dendrite Formation 4.2.3.2 Zinc Corrosion 4.2.3.3 Passivation 4.2.3.4 Hydrogen Evolution Reaction (HER) 4.3 Optimization of the Performances of Zinc Anode Battery Systems 4.3.1 Structural Design towards High-Performing Zinc Anode 4.3.2 Interfacial Modification between the Anode and Electrolyte 4.3.3 The Use of Electrolyte Additives 4.3.4 Incorporation of Hydrodynamics into Zinc-Ion Battery System 4.4 Types of Flow Batteries Utilizing Zn Anode and Their Performances 4.4.1 Types of Zinc Flow Batteries 4.4.1.1 Zinc-Bromine Flow Battery 4.4.1.2 Zinc-Nickel Flow Battery 4.4.1.3 Zinc-Iron Flow Battery 4.4.1.4 Zinc-Air Flow Battery 4.4.2 Performances of Zinc Flow Batteries 4.5 Areas Where Zinc Flow Batteries Have Been Applied 4.5.1 Power Quality Control 4.5.2 Incorporating with Renewable Energy Sources 4.5.3 Electric Vehicles (EVs) 4.6 Summary and Future Perspectives References 5. Advanced Materials for Energy Storage Devices 5.1 General Introduction 5.2 Supercapacitors 5.2.1 Classifications of Supercapacitors 5.2.2 Electrolyte for Supercapacitor 5.2.3 Advanced Electrode Materials for Supercapacitor 5.3 Li-Ion Capacitors 5.3.1 Electrolyte for LICs 5.3.2 Recently Developed Electrode Materials for LICs 5.4 Battery 5.4.1 Lithium-Ion Batteries (LIBs) 5.4.1.1 Electrolyte for LIBs 5.4.1.2 Electrode Materials of Current Interest for LIBs 5.4.2 Sodium-Ion Batteries (SIBs) 5.4.2.1 Rationale of SIBs for Energy Storage 5.4.2.2 Physical Principles of SIBs 5.4.2.3 Electrolytes Materials for SIBs 5.4.2.4 Electrode Materials for SIBs 5.5 Summary and Future Prospects References 6. Li6PS5X (X = Cl, Br, or I): A Family of Li-Rich Inorganic Solid Electrolytes for All-Solid-State Battery 6.1 Introduction 6.2 History of Solid-State Batteries 6.3 Mechanism of Ion Transport in Solid Electrolytes 6.4 Sulphide-Based Solid Electrolytes 6.5 Persisting Challenges Encountered and Possible Solution 6.5.1 Physical Contact between Electrolyte and Electrodes 6.5.2 Electrochemical Interfacial Reactions 6.5.3 Cathode Active Material/TSE Interface 6.5.3.1 Intercalation Cathode/TSE Interface 6.5.3.2 Conversion Cathode/TSEs Interface 6.5.4 Li-Metal Anode/TSEs Interface 6.5.5 Lithium Dendrites and Li-Metal Protection 6.6 Fundamentals of Argyrodite Electrolyte 6.7 Argyrodites for ASSBs 6.7.1 Argyrodite with X = Cl (Li6PS5Cl) 6.7.2 Argyrodite with X = Br (Li6PS5Br) 6.7.3 Argyrodite with X = I (Li6PS5I) 6.8 Conclusions and Perspectives Acknowledgements References 7. Recent Advances in Usage of Cobalt Oxide Nanomaterials as Electrode Material for Supercapacitors 7.1 Introduction 7.2 Theoretical Overview of Supercapacitors 7.2.1 Supercapacitor Performance 7.3 Electrode Materials 7.4 Synthesis and Performance of Co3O4 7.4.1 Coprecipitation Method 7.4.2 Hydrothermal Method 7.4.3 Sol Gel Method 7.4.4 Chemical Bath Deposition Method (CBD) 7.4.5 Electrodeposition 7.5 Co3O4-Based Nanocomposites 7.5.1 Co3O4/Carbon Composites 7.5.2 Co3O4/Graphene Composites 7.5.3 Cobalt Oxide (Co3O4)/Conducting Polymer 7.6 Conclusion Acknowledgements References 8. Recent Developments in Metal Ferrite Materials for Supercapacitor Applications 8.1 Introduction 8.1.1 Forms of Energy 8.2 Electrochemical Energy Storage Systems 8.3 Metal Ferrite for Supercapacitor Applications 8.4 Manganese Ferrite 8.5 Cobalt Ferrite 8.6 Copper Ferrite 8.7 Nickel Ferrite 8.8 Conclusion Acknowledgements References 9. Advances in Nickel-Derived Metal-Organic Framework-Based Electrodes for High-Performance Supercapacitor 9.1 Introduction 9.2 Methods of Synthesizing MOF-Based Supercapacitor 9.2.1 Powder Preparation 9.2.1.1 Direct Powder Synthesis 9.2.1.2 Powder Synthesis Using MOF-Template 9.2.2 Device Assembly 9.2.2.1 Deposition 9.3 Advances and Optimizations in Ni-Based MOF Supercapacitor 9.3.1 Pristine Ni-Based MOFs 9.3.2 Derived Ni-Based MOFs/Composites 9.3.2.1 Metal Oxide/Hydroxide 9.3.2.2 Mixed Metal (Bimetallic/Ternary) MOFs 9.3.3 Hybrid Ni-MOF Supercapacitors 9.4 Challenges 9.5 The Future of MOF-Based Energy Supercapacitor References 10. The Place of Biomass-Based Electrode Materials in Next-Generation Energy Conversion and Storage 10.1 Introduction 10.2 Biomass and Its Carbon Derivations 10.2.1 Biomass Reserve 10.2.2 Methods of Carbon Derivation from Biomass 10.2.2.1 Pyrolysis 10.2.2.2 Activation 10.2.2.3 Hydrothermal Carbonization 10.2.2.4 Functionalization of Hydrothermal Carbons 10.3 Applications of Biomass-Based Electrode Materials 10.3.1 Applications in Fuel Cells 10.3.1.1 Electrocatalytic Alcohol Oxidation and Oxygen Reduction Reaction 10.3.2 Applications in Li Batteries 10.3.3 Applications in Supercapacitors 10.3.4 Advantages of Biomass-Based Electrode Materials over Other Sources 10.3.5 The Place of Biomass-Based Electrode Materials in Next-Generation Energy Conversion and Storage 10.4 Conclusion and Future Outlooks Acknowledgements References 11. Synthesis and Electrochemical Properties of Graphene 11.1 Introduction 11.2 Nanostructures of Carbon 11.3 Graphene Layer, Graphene Oxide (GO), and Reduced Graphene Oxide (rGO) Synthesis 11.4 Electrochemical Applications of Graphene and Reduced Graphene Oxide 11.4.1 Graphene-Based Electrode Materials for Supercapacitors 11.4.2 Graphene-Based Battery Electrodes 11.4.3 Innovative Features Associated with Graphene Electroactive Material 11.5 Conclusion Acknowledgements References 12. Dual Performance of Fuel Cells as Efficient Energy Harvesting and Storage Systems 12.1 Introduction 12.2 Working Principle of Fuel Cells 12.3 Advantages and Disadvantages of Fuel Cells 12.4 Classifications of Fuel Cells 12.4.1 Alkaline Fuel Cells (AFCs) 12.4.2 Proton Exchange Membrane Fuel Cells (PEMFCs) 12.4.3 Direct Methanol Fuel Cells (DMFCs) 12.4.4 Microbial Fuel Cells (MFCs) 12.4.5 Polymer Electrolyte Fuel Cells (PEFCs) 12.4.6 Photocatalytic Fuel Cells (PFCs) 12.4.7 Solid Acid Fuel Cells (SAFCs) 12.4.8 Phosphoric Acid Fuel Cells (PAFCs) 12.4.9 Molten Carbonate Fuel Cells (MCFCs) 12.5 Dual Functions of Fuel Cells 12.5.1 Fuel Cells as Energy Harvesters 12.5.2 Fuel Cells as Energy Storage Systems 12.6 Conclusion References 13. The Potential Role of Electrocatalysts in Electrofuel Generation and Fuel Cell Application 13.1 Introduction and Background 13.2 Electrofuels and Pathways: Power-to-x 13.2.1 Power-to-Hydrogen (H2): H2-Based Synthetic Fuel 13.2.2 Power to Liquid Fuels (Methanol and Ethanol): C1-C2-Based Synthetic Fuels Using Solid Oxide Electrolysis Cell 13.3 Nanomaterials and Nanotechnology 13.3.1 Preparation of AC and Pd-Based Nanocatalysts 13.3.2 Application of the Green Prepared Nanocatalysts: MEA Fabrication and Cell Performance Tests 13.4 Application of the Nanomaterials Electrocatalysts for Energy Conversion: Carbon Dioxide Reduction 13.5 Conclusion and Recommendations 13.5.1 Recommendations Acknowledgements References 14. Reliability Study of Solar Photovoltaic Systems for Long-Term Use 14.1 Introduction 14.2 PV Technology Description 14.3 Different Technologies Used in PV Systems 14.3.1 Crystalline Silicon 14.3.2 Cadmium Telluride (CdTe) 14.3.3 Copper Indium Selenide (CIS) 14.3.4 Copper Indium Gallium Diselenide (CIGS) 14.4 Performance Analysis of PV Modules 14.5 Degradation Analysis of PV Modules 14.6 Failure Mode and Effect Analysis (FMEA) for PV Systems 14.7 Conclusions and Future Projections References 15. Physical Methods to Fabricate TiO2 QDs for Optoelectronics Applications 15.1 Introduction 15.2 Device Fabrication 15.2.1 Solar Cell 15.2.1.1 Organic Solar Cell (OSC) 15.2.1.2 Inorganic Solar Cell 15.2.1.3 Perovskite Solar Cell 15.2.2 Memory Devices 15.2.3 Transistor Devices 15.2.4 Gas Sensor 15.3 Characterization Technique 15.4 Structural, Optical, and Electrical Properties of TiO2 QDs 15.5 Mechanism of TiO2 QD Formation 15.6 Challenges and Possible Enhancement of TiO2 QD-Based Device 15.7 Feature Scope 15.8 Conclusion References 16. Chemical Spray Pyrolysis Method to Fabricate CdO Thin Films for TCO Applications 16.1 Introduction 16.2 Application of TCOs 16.3 Experimental Details 16.4 Results and Discussion 16.4.1 XRD and Surface Morphology Studies 16.4.2 Optical Studies 16.4.3 Non-linear Optical Studies 16.4.3.1 Physical Mechanisms of Optical Non-Linearities in Undoped CdO Thin Films 16.4.3.2 Non-linear Refraction 16.4.3.3 Non-linear Absorption 16.4.4 Electrical Studies 16.5 Conclusion References 17. Photovoltaic Characteristics and Applications 17.1 Introduction 17.2 Semiconductors 17.3 The P-n Junctions 17.4 Materials Used for the Construction of Photovoltaic Cells 17.5 Photovoltaic Panel or Module 17.6 Types of Photovoltaic Panels 17.6.1 Classification based on Materials and Manufacturing Methods 17.6.1.1 Gallium Arsenide 17.6.1.2 Cadmium Telluride 17.6.1.3 Copper Indium diselenide 17.6.1.4 Perovskite Materials 17.6.1.5 Organic/polymer Materials 17.6.1.6 Quantum dots 17.6.1.7 Dye-sensitized Materials 17.6.2 Classification based on final shape 17.6.2.1 Monocrystalline Panels 17.6.2.2 Polycrystalline Panels 17.6.2.3 Amorphous Panels 17.6.2.4 Amorphous Silicon Panels 17.6.2.5 Tandem Panels 17.7 Factors Influencing Conversion Performance 17.8 Factors Affecting the Performance of Photovoltaic Panels 17.9 Ways of Regulating the Variables That Affect the PV Panel's Performance 17.10 Conclusion References 18. Comparative Study of Different Dopants on the Structural and Optical Properties of Chemically Deposited Antimony Sulphide Thin Films 18.1 Introduction 18.2 Materials and Methods 18.2.1 Materials 18.2.2 Method 18.2.3 Growth Mechanism of CuSb2 Thin Films 18.3 Results and Discussion 18.3.1 Structural Analysis 18.3.2 Optical Analysis 18.4 Conclusion References 19. Research Progress in Synthesis and Electrochemical Performance of Bismuth Oxide 19.1 Introduction 19.2 Phases and Properties 19.3 Synthesis Methods 19.4 Applications 19.4.1 Energy Storage 19.4.2 Bi2O3-Based Composite Electrodes 19.4.3 Bi2O3-Based Battery Electrodes 19.5 Conclusion References 20. Earth-Abundant Materials for Solar Cell Applications 20.1 Basic Concepts of Earth-Abundant Materials 20.2 Some Earth-Abundant Solar Cell Materials 20.2.1 Manganese 20.2.2 Iron 20.2.3 Nickel 20.2.4 Sulphur 20.2.5 Tin 20.2.6 Barium 20.2.7 Chalcogenides 20.2.8 Metallic Sulphides 20.2.9 Quaternary Compounds 20.3 Synthesis Methods of Earth-Abundant Materials 20.3.1 Plasma-Assisted Techniques 20.3.2 Chemical Vapour Deposition (CVD) 20.3.3 Sputtering 20.3.4 Electrochemical Deposition (ECD) 20.3.5 Successive Ionic Layer Adsorption and Reaction (SILAR) 20.3.6 Chemical Synthesis 20.3.7 Sulphurization Technique 20.3.8 Sol-Gel Method 20.3.9 Spray pyrolysis 20.3.10 Thermal evaporation 20.4 Conclusion References 21. New Perovskite Materials for Solar Cell Applications 21.1 Introduction of Perovskite Solar Cells 21.2 Organic-Inorganic Perovskite Materials 21.2.1 Methylammonium Lead Halide, CH3NH3PbX3 21.2.2 Methylammonium Tin Halide, CH3NH3SnX3 21.3 Chalcogenide Perovskite Materials 21.3.1 Cesium Lead Iodide, CsPbI3 21.3.2 Barium Zirconium Sulphide, BaZrS3 21.4 Double Perovskite Oxides (DPOs) 21.5 Lead-Free Perovskites 21.6 Conclusion and Future Perspectives References 22. The Application of Carbon and Graphene Quantum Dots to Emerging Optoelectronic Devices 22.1 Introduction 22.2 Graphite 22.3 Device Fabrication 22.3.1 Dye-sensitized Solar Cell (DSSC) 22.3.2 Electrochemical Energy Storage System 22.3.2.1 Electrochemical Battery 22.3.2.2 Electrochemical Capacitor 22.3.3 MIMO for LTE and 5G Antenna 22.3.4 Transistor Devices 22.4 Structural, Optical, and Electronic Properties of CDs and GQDs 22.5 Characterization Technique of CDs and GQDs 22.6 Synthesis of CDs and GQDs 22.6.1 Bottom-Up 22.6.1.1 Hydrothermal/Solvothermal Technique 22.6.1.2 Microwave Irradiation Technique 22.6.2 Top-Down 22.6.2.1 Chemical Oxidation Technique 22.6.2.2 Thermal (Vacuum) Evaporation 22.7 Conclusion References 23. Solar Cell Technology: Challenges and Progress 23.1 Introduction 23.2 First-Generation Solar Cells: Crystalline Silicon Solar Cells 23.2.1 Back-Surface Field Solar cells 23.2.2 High-Efficiency cells 23.2.2.1 Passivated Emitted and Rear Cell and Passivated Emitted Rear Locally Diffused Cell 23.2.2.2 PERT, TOPCon, and Bifacial Cells 23.2.2.3 Inter-Digitated Back Contact Cell 23.2.2.4 Heterojunction Solar Cells 23.3 Second-Generation Solar Cells: Thin-Film Silicon Solar Cells 23.3.1 Amorphous Silicon (a-Si) and Microcrystalline Silicon (mc-Si) Advance and Challenges in a-Si Thin-Film Solar Cells 23.3.2 Cadmium Telluride (CdTe) Thin-Film Solar Cells 23.3.2.1 Advances and Challenges in CdTe Thin-Film Solar Cells 23.3.3 Copper-Indium-Gallium-Diselenide (CIGS) 23.3.3.1 Advances and Challenges of CIGS Thin-Film Solar Cells 23.4 Third-Generation Solar Cells: Emerging Solar Cell Technologies 23.4.1 Polymer Solar Cells 23.4.1.1 Origin of the Electrical Conductivity and Band Gap in Conjugated Polymers 23.4.1.2 Working Principle of Organic Solar Cells and Efficiency Limiting Factors 23.4.1.3 The Bulk Heterojunction Concept 23.4.1.4 Morphology of Active Layer of BHJ Organic Solar Cells 23.4.1.5 Advances and Challenges in Organic Solar Cells 23.4.1.6 Stability: Challenges of Organic Solar Cells 23.4.1.6.1 Factors Affecting Stability of OSCs 23.4.1.6.2 Mechanism to Improve Stability of OSCs 23.4.2 Perovskite Solar Cells 23.4.2.1 Evolution of Perovskite Solar Cells Device Structure 23.4.2.1.1 Liquid Electrolyte Dye-Sensitized Solar Cells 23.4.2.1.2 Solid-State PSCs with Mesoporous TiO2 Scaffold 23.4.2.1.3 Meso-Superstructured PCSs Based on Non-Injecting Oxides 23.4.2.1.4 Planar Heterojunction 23.4.2.2 Progress in Fabrication Techniques and Stability Of PSCs 23.4.2.3 Stability of Perovskite Solar Cells: Challenge to Commercialization 23.5 Future Outlooks References 24. Stannate Materials for Solar Energy Applications 24.1 Introduction 24.2 Solar Energy Harvesting 24.3 Solar Energy Harvesting and Photovoltaic (PV) Cells (Solar Cells) 24.4 Current Technology 24.5 Types of Solar Cells 24.5.1 Semiconductor Solar Cells 24.5.2 Dye-Sensitized Solar Cells 24.5.3 Perovskite Solar Cells (PSCs) 24.5.4 Spinel Oxide Solar Cells 24.6 Crystal Structures of Spinels and Perovskites Stannates 24.6.1 Crystal Structures: Spinel 24.6.2 Crystal Structure: Perovskite 24.6.3 Band Structure 24.7 Doped Stannates 24.8 Peculiarities/Properties of the Stannates 24.8.1 Barium Stannate (Barium Stannic Oxide), Barium Tin Oxide BaSnO3 (or BSO) 24.8.2 Strontium Stannate (Strontium Stannic Oxide), (Strontium Tin Oxide), SrSnO3 (SSO) 24.8.3 Zinc Stannate or Zinc Stannic Oxide (ZSO) or Zinc Tin Oxide (ZTO) 24.9 Methods of Synthesis 24.9.1 Thin Films 24.9.2 Metal Oxide Thin Films 24.10 Conclusion References Index