دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: نویسندگان: N. Balabanian, T.A. Bickart, S. Seshu سری: ISBN (شابک) : 0471045764;97 ناشر: Wiley سال نشر: 1969 تعداد صفحات: 969 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Electrical Network Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری شبکه های الکتریکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
1. Fundamental Concepts 1.1 Introduction 1.2 Elementary Matrix Algebra Basic Operations Types of Matrices Determinants The Inverse of a Matrix Pivotal Condensation Linear Equations Characteristic Equation Similarity Sylvester's Inequality Norm of a Vector 1.3 Notation and References 1.4 Network Classification Linearity Time-Invariance Passivity Reciprocity 1.5 Network Components The Transformer The Gyrator Independent Sources Controlled or Dependent Sources The Negative Converter Problems 2. Graph Theory and Network Equations 2.1 Introductory Concepts Kirchhoff's Laws Loop Equations Node Equations State Equations—A Mixed Set Solutions of Equations 2.2 Linear Graphs Introductory Definitions The Incidence Matrix The Loop Matrix Relationships between Submatrices of A and B Cut-sets and the Cut-set Matrix Planar Graphs 2.3 Basic Laws of Electric Networks Kirchhoff's Current Law Kirchhoff's Voltage Law The Branch Relations 2.4 Loop, Node, and Node-Pair Equations Loop Equations Node Equations Node-pair Equations 2.5 Duality 2.6 Nonreciprocal and Active Networks 2.7 Mixed-Variable Equations Problems 3. Network Functions 3.1 Driving-Point and Transfer Functions Driving-Point Functions Transfer Functions 3.2 Multiterminal Networks 3.3 Two-Port Networks Open-circuit and Short-circuit Parameters Hybrid Parameters Chain Parameters Transmission Zeros 3.4 Interconnection of Two-Port Networks Cascade Connection Parallel and Series Connections Permissibility of Interconnection 3.5 Multiport Networks 3.6 The Indefinite Admittance Matrix Connecting Two Terminals Together Suppressing Terminals Networks in Parallel The Cofactors of the Determinant of Yi 3.7 The Indefinite Impedance Matrix 3.8 Topological Formulas for Network Functions Determinant of the Node Admittance Matrix Symmetrical Cofactors of the Node Admittance Matrix Unsymmetrical Cofactors of the Node Admittance Matrix The Loop Impedance Matrix and its Cofactors Two-port Parameters Problems 4. State Equations 4.1 Order of Complexity of a Network 4.2 Basic Considerations in Writing State Equations 4.3 Time-Domain Solutions of the State Equations Solution of Homogeneous Equation Alternate Method of Solution Matrix Exponential 4.4 Functions of a Matrix The Cayley-Hamilton Theorem and its Consequences Distinct Eigenvalues Multiple Eigenvalues Constituent Matrices The Resolvent Matrix The Resolvent Matrix Algorithm Resolving Polynomials 4.5 Systematic Formulation of the State Equations Topological Considerations Eliminating Unwanted Variables Time-invariant Networks RLC Networks Parameter Matrices for RLC Networks Considerations in Handling Controlled Sources 4.6 Multiport Formulation of State Equations Output Equations Problems 5. Integral Solutions 5.1 Convolution Theorem 5.2 Impulse Response Transfer Function Nonzero at Infinity Alternative Derivation of Convolution Integral 5.3 Step Response 5.4 Superposition Principle Superposition in Terms of Impulses Superposition in Terms of Steps 5.5 Numerical Solution Multi-input, Multi-output Networks State Response Propagating Errors 5.6 Numerical Evaluation of eAT Computational Errors Errors in Free-state Response Errors in Controlled-state Response Problems 6. Representations of Network Functions 6.1 Poles, Zeros, and Natural Frequencies Locations of Poles Even and Odd Parts of a Function Magnitude and Angle of a Function The Delay Function 6.2 Minimum-phase Functions All-pass and Minimum-phase Functions Net Change in Angle Hurwitz Polynomials 6.3 Minimum-phase and Non-minimum-phase Networks Ladder Networks Constant-Resistance Networks 6.4 Determining a Network Function from its Magnitude Maximally Flat Response Chebyshev Response 6.5 Calculation of a Network Function from a Given Angle 6.6 Calculation of Network Function from a Given Real Part The Bode Method The Gewertz Method The Miyata Method 6.7 Integral Relationships between Real and Imaginary Parts Reactance and Resistance-Integral Theorems Limitations on Constrained Networks Alternative Form of Relationships Relations Obtained with Different Weighting Functions 6.8 Frequency and Time-Response Relationships Step Response Impulse Response Problems 7. Fundamentals of Network Synthesis 7.1 Transformation of Matrices Elementary Transformations Equivalent Matrices Similarity Transformation Congruent Transformation 7.2 Quadratic and Hermitian Forms Definitions Transformation of a Quadratic Form Definite and Semi Definite Forms Hermitian Forms 7.3 Energy Functions Passive, Reciprocal Networks The Impedance Function Condition on Angle 7.4 Positive Real Functions Necessary and Sufficient Conditions The Angle Property of Positive Real Functions Bounded Real Functions The Real Part Function 7.5 Reactance Functions Realization of Reactance Functions Ladder-Form of Network Hurwitz Polynomials and Reactance Functions 7.6 Impedances and Admittances of RC Networks Ladder-Network Realization Resistance-Inductance Networks 7.7 Two-Port Parameters Resistance-Capacitance Two-Ports 7.8 Lossless Two-Port Terminated in a Resistance 7.9 Passive and Active RC Two-Ports Cascade Connection Cascading a Negative Converter Parallel Connection The RC-Amplifier Configuration Problems 8. The Scattering Parameters 8.1 The Scattering Relations of a One-Port Normalized Variables—Real Normalization Augmented Network Reflection Coefficient for Time-Invariant, Passive, Reciprocal Network Power Relations 8.2 Multiport Scattering Relations The Scattering Matrix Relationship To Impedance and Admittance Matrices Normalization and the Augmented Multiport 8.3 The Scattering Matrix and Power Transfer Interpretation of Scattering Parameters 8.4 Properties of the Scattering Matrix Two-Port Network Properties An Application—Filtering or Equalizing Limitations Introduced by Parasitic Capacitance 8.5 Complex Normalization Frequency-Independent Normalization Negative-Resistance Amplifier Problems 9. Signal-Flow Graphs and Feedback 9.1 An Operational Diagram 9.2 Signal-Flow Graphs Graph Properties Inverting a Graph Reduction of a Graph Reduction to an Essential Graph Graph-Gain Formula Drawing the Signal-Flow Graph of a Network 9.3 Feedback Return Ratio and Return Difference Sensitivity 9.4 Stability Routh Criterion Hurwitz Criterion Liénard-Chip art Criterion 9.5 The Nyquist Criterion Discussion of Assumptions Nyquist Theorem Problems 10. Linear Time-Varying and Nonlinear Networks 10.1 State Equation Formulation for Time-Varying Networks Reduction to Normal Form The Components of the State Vector 10.2 State-Equation Solution for Time-Varying Networks A Special Case of the Homogeneous Equation Solution Existence and Uniqueness of Solution of the Homogeneous Equation Solution of State Equation—Existence and Uniqueness Periodic Networks 10.3 Properties of the State-Equation Solution The Gronwall Lemma Asymptotic Properties Relative to a Time-Invariant Reference Asymptotic Properties Relative to a Periodic Reference Asymptotic Properties Relative to a General Time-Varying Reference 10.4 Formulation of State Equation for Nonlinear Networks Topological Formulation Output Equation 10.5 Solution of State Equation for Nonlinear Networks Existence and Uniqueness Properties of the Solution 10.6 Numerical Solution Newton's Backward-Difference Formula Open Formulas Closed Formulas Euler's Method The Modified Euler Method The Adams Method Modified Adams Method Milne Method Predictor-Corrector Methods Runge-Kutta Method Errors 10.7 Liapunov Stability Stability Definitions Stability Theorems Instability Theorem Liapunov Function Construction Problems Appendix 1 Generalized Functions A1.1 Convolution Quotients and Generalized Functions A1.2 Algebra of Generalized Functions Convolution Quotient of Generalized Functions A1.3 Particular Generalized Functions Certain Continuous Functions Locally Integrable Functions A1.4 Generalized Functions as Operators The Impulse Function A1.5 Integrodifferential Equations A1.6 Laplace Transform of a Generalized Function Appendix 2 Theory of Functions of a Complex Variable A2.1 Analytic Functions A2.2 Mapping A2.3 Integration Cauchy's Integral Theorem Cauchy's Integral Formula Maximum Modulus Theorem and Schwartz's Lemma A2.4 Infinite Series Taylor Series Laurent Series Functions Defined by Series A2.5 Multivalued Functions The Logarithm Function Branch Points, Cuts, and Riemann Surfaces Classification of Multivalued Functions A2.6 The Residue Theorem Evaluating Definite Integrals Jordan's Lemma Principle of the Argument A2.7 Partial-Fraction Expansions A2.8 Analytic Continuation Appendix 3 Theory of Laplace Transformations A3.1 Laplace Transforms: Definition and Convergence Properties A3.2 Analytic Properties of the Laplace Transform A3.3 Operations on the Determining and Generating Functions Real and Complex Convolution Differentiation and Integration Initial-Value and Final-Value Theorems Shifting A3.4 The Complex Inversion Integral Bibliography 1. Mathematical Background Complex Variable Theory Computer Programming Differential Equations Laplace Transform Theory Matrix Algebra Numerical Analysis 2. Network Topology and Topological Formulas 3. Loop, Node-Pair, Mixed-Variable Equations 4. Network Functions and Their Properties 5. State Equations 6. Network Response and Time-Frequency Relationships 7. Network Synthesis 8. Scattering Parameters 9. Signal-Flow Graphs 10. Sensitivity 947 11. Stability 12. Time-Varying and Nonlinear Network Analysis