دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Ion Boldea. Lucian N. Tutelea
سری:
ISBN (شابک) : 0367374714, 9780367374716
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 403
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 67 مگابایت
در صورت تبدیل فایل کتاب Electric Machines: Steady State and Performance with MATLAB® به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ماشین های الکتریکی: حالت پایدار و عملکرد با MATLAB® نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه دوم با پوشش جامع خود از وضعیت هنر، انواع اولیه ترانسفورماتورها و ماشین های الکتریکی را معرفی می کند. طبقه بندی و خصوصیات - مدل سازی و عملکرد - ترانسفورماتورهای الکتریکی قدرت (تک فاز و چند فاز)، موتورها و ژنراتورها، ماشین های تجاری (برس dc، القایی dc سنکرون تحریک شده، سنکرون PM، سنکرون رلوکتانس) و برخی موارد جدید (ماشین های AC چند فاز، رلوکتانس سوئیچ) ماشینهایی که پتانسیل بالایی برای صنعت با حرکت چرخشی یا خطی دارند، همگی در کتاب بررسی شدهاند.
این کتاب به طور مفصل ویژگیهای مدلسازی مدار و ویژگیهای عملکرد در حالت پایدار، تکنیکهای آزمایش و اندازهگیری اولیه الکترومغناطیسی گرمایی را با مثالهای عددی حلشده و موارد خاص برای نشان دادن ماشینهای الکتریکی جدید با پتانسیل صنعتیسازی قوی پوشش میدهد. . تمام فرمولهای مورد استفاده برای مشخص کردن پارامترها و عملکرد ممکن است با خیال راحت در صنعت برای طراحیهای اولیه مورد استفاده قرار گیرند و در کتاب از طریق نمونههای حل عددی مورد علاقه صنعتی استفاده شدهاند.
برنامههای شبیهسازی رایانهای متعدد در MATLAB® و Simulink® که ویژگیهای عملکرد موجود در فصلها را نشان میدهند، گنجانده شدهاند و بسیاری از آنها به عنوان تکلیف خانگی برای تسهیل درک عمیقتر مسائل اساسی استفاده میشوند.
این کتاب برای یک دوره ترم اول در نظر گرفته شده است که ترانسفورماتورهای الکتریکی، ماشینهای دوار و خطی، مدلسازی حالت پایدار و محاسبات عملکرد، اندازهگیری اولیه و آزمایش تکنیکهای استاندارد و نوآورانه را پوشش میدهد. این کتاب درسی ممکن است توسط مهندسان تحقیق و توسعه در صنعت استفاده شود زیرا تمام پارامترها و ویژگیهای ماشین با عبارات ریاضی طراحی صنعتی آماده محاسبه میشوند.
With its comprehensive coverage of the state of the art, this Second Edition introduces basic types of transformers and electric machines. Classifications and characterization―modeling and performance―of power electric transformers (single and multiphase), motors and generators, commercial machines (dc brush, induction dc excited synchronous, PM synchronous, reluctance synchronous) and some new ones (multiphase ac machines, switched reluctance machines) with great potential for industry with rotary or linear motion are all treated in the book.
The book covers, in detail, circuit modeling characteristics and performance characteristics under steady state, testing techniques and preliminary electromagnetic-thermic dimensioning with lots of solved numerical examples and special cases to illustrate new electric machines with strong industrialization potential. All formulae used to characterize parameters and performance may be safely used in industry for preliminary designs and have been applied in the book through numerical solved examples of industrial interest.
Numerous computer simulation programs in MATLAB® and Simulink® that illustrate performance characteristics present in the chapters are included and many be used as homework to facilitate a deeper understanding of fundamental issues.
This book is intended for a first-semester course covering electric transformers, rotary and linear machines, steady-state modeling and performance computation, preliminary dimensioning, and testing standardized and innovative techniques. The textbook may be used by R&D engineers in industry as all machine parameters and characteristics are calculated by ready-to-use industrial design mathematical expressions.
Cover Half Title Title Page Copyright Page Table of Contents Preface Authors Chapter 1: Introduction 1.1 Electric Energy and Electric Machines 1.2 Basic Types of Transformers and Electric Machines 1.3 Losses and Efficiency 1.4 Physical Limitations and Ratings 1.5 Nameplate Ratings 1.6 Methods of Analysis 1.7 State of the Art and Perspective 1.8 Summary 1.9 Proposed Problems References Chapter 2: Electric Transformers 2.1 AC Coil with Magnetic Core and Transformer Principles 2.2 Magnetic Materials in EMs and Their Losses 2.2.1 Magnetization Curve and Hysteresis Cycle 2.2.2 Permanent Magnets 2.2.3 Losses in Soft Magnetic Materials 2.3 Electric Conductors and Their Skin Effects 2.4 Components of Single- and Three-Phase Transformers 2.4.1 Cores 2.4.2 Windings 2.5 Flux Linkages and Inductances of Single-Phase Transformers 2.5.1 Leakage Inductances of Cylindrical Windings 2.5.2 Leakage Inductances of Alternate Windings 2.6 Circuit Equations of Single-Phase Transformers with Core Losses 2.7 Steady State and Equivalent Circuit 2.8 No-Load Steady State ( I 2 = 0)/Lab 2.1 2.8.1 Magnetic Saturation under No Load 2.9 Steady-State Short-Circuit Mode/Lab 2.2 2.10 Single-Phase Transformers: Steady-State Operation on Load/Lab 2.3 2.11 Three-Phase Transformers: Phase Connections 2.12 Particulars of Three-Phase Transformers on No Load 2.12.1 No-Load Current Asymmetry 2.12.2 Y Primary Connection for the Three-Limb Core 2.13 General Equations of Three-Phase Transformers 2.13.1 Inductance Measurement/Lab 2.4 2.14 Unbalanced Load Steady State in Three-Phase Transformers/Lab 2.5 2.15 Paralleling Three-Phase Transformers 2.16 Transients in Transformers 2.16.1 Electromagnetic (R,L) Transients 2.16.2 Inrush Current Transients/Lab 2.6 2.16.3 Sudden Short Circuit from No Load /Lab 2.7 2.16.4 Forces at Peak Short-Circuit Current 2.16.5 Electrostatic (C,R) Ultrafast Transients 2.16.6 Protection Measures Against Overvoltage Electrostatic Transients 2.17 Instrument Transformers 2.18 Autotransformers 2.19 Transformers and Inductances for Power Electronics 2.20 Preliminary Transformer Design (Sizing) by Example 2.20.1 Specifications 2.20.2 Deliverables 2.20.3 Magnetic Circuit Sizing 2.20.4 Windings Sizing 2.20.5 Losses and Efficiency 2.20.6 No-Load Current 2.20.7 Active Material Weight 2.20.8 Equivalent Circuit 2.21 Summary 2.22 Proposed Problems References Chapter 3: Energy Conversion and Types of Electric Machines 3.1 Energy Conversion in Electric Machines 3.2 Electromagnetic Torque 3.3 Passive Rotor Electric Machines 3.4 Active Rotor Electric Machines 3.4.1 dc Rotor and ac Stator Currents 3.4.2 AC Currents in the Rotor and the Stator 3.4.3 DC (PM) Stator and AC Rotor 3.5 Fix Magnetic Field (Brush–Commutator) Electric Machines 3.6 Traveling Field Electric Machines 3.7 Types of Linear Electric Machines 3.8 Flux-Modulation Electric Machines: A New Breed 3.9 Summary 3.10 Proposed Problems References Chapter 4: Brush–Commutator Machines: Steady State 4.1 Introduction 4.1.1 Stator and Rotor Construction Elements 4.2 Brush–Commutator Armature Windings 4.2.1 Simple Lap Windings by Example: N s = 16, 2p 1 = 4 4.2.2 Simple Wave Windings by Example: N s = 9, 2p 1 = 2 4.3 The Brush–Commutator 4.4 Airgap Flux Density of Stator Excitation MMF 4.5 No-Load Magnetization Curve by Example 4.6 PM Airgap Flux Density and Armature Reaction by Example 4.7 The Commutation Process 4.7.1 The Coil Commutation Inductance 4.8 EMF 4.9 Equivalent Circuit and Excitation Connections 4.10 D.C. Brush Motor/Generator with Separate (or PM) Excitation/Lab 4.1 4.11 D.C. Brush PM Motor Steady-State and Speed Control Methods/Lab 4.2 4.11.1 Speed Control Methods 4.12 D.C. Brush Series Motor/Lab 4.3 4.12.1 Starting and Speed Control 4.13 A.C. Brush Series Universal Motor 4.14 Testing Brush–Commutator Machines/Lab 4.4 4.14.1 D.C. Brush PM Motor Losses, Efficiency, and Cogging Torque 4.15 Preliminary Design of a D.C. Brush PM Automotive Small Motor by Example 4.15.1 PM Stator Geometry 4.15.2 Rotor Slot and Winding Design 4.16 Summary 4.17 Proposed Problems References Chapter 5: Induction Machines: Steady State 5.1 Introduction: Applications and Topologies 5.2 Construction Elements 5.3 AC Distributed Windings 5.3.1 Traveling MMF of AC Distributed Windings 5.3.2 Primitive Single-Layer Distributed Windings (q ≥ 1, Integer) 5.3.3 Primitive Two-Layer Three-Phase Distributed Windings (q = Integer) 5.3.4 MMF Space Harmonics for Integer q (Slots/Pole/Phase) 5.3.5 Practical One-Layer AC Three-Phase Distributed Windings 5.3.6 Pole Count Changing AC Three-Phase Distributed Windings 5.3.7 Two-Phase AC Windings 5.3.8 Cage Rotor Windings 5.3.9 EMF of AC Windings 5.4 Induction Machine Inductances 5.4.1 Main Inductance 5.4.2 Leakage Inductance 5.5 Rotor Cage Reduction to the Stator 5.6 Wound Rotor Reduction to the Stator 5.7 Three-Phase Induction Machine Circuit Equations 5.8 Symmetric Steady State of Three-Phase IMs 5.9 Ideal No-Load Operation/Lab 5.1 5.10 Zero Speed Operation (S = 1)/Lab 5.2 5.11 No-Load Motor Operation (Free Shaft)/Lab 5.3 5.12 Motor Operation on Load (1 > S > 0)/Lab 5.4 5.13 Generating at Power Grid (n > f1/p1,S < 0)/Lab 5.5 5.14 Autonomous Generator Mode (S < 0)/Lab 5.6 5.15 Electromagnetic Torque and Motor Characteristics 5.16 Deep-Bar and Dual-Cage Rotors 5.17 Parasitic (Space Harmonics) Torques 5.18 Starting Methods 5.18.1 Direct Starting (Cage Rotor) 5.18.2 Reduced Stator Voltage 5.18.3 Additional Rotor Resistance Starting 5.19 Speed Control Methods 5.19.1 Wound Rotor IM Speed Control 5.20 Unbalanced Supply Voltages 5.21 One Stator Phase Open by Example/Lab 5.7 5.22 One Rotor Phase Open 5.23 Capacitor Split-Phase Induction Motors/Lab 5.8 5.24 Linear Induction Motors 5.24.1 End and Edge Effects in LIMs 5.25 Regenerative and Virtual Load Testing of IMs/Lab 5.7 5.26 Preliminary Electromagnetic IM Design by Example 5.26.1 Magnetic Circuit 5.26.2 Electric Circuit 5.26.3 Parameters 5.26.3.1 Leakage reactances 5.26.4 Starting Current and Torque 5.26.5 Breakdown Slip and Torque 5.26.6 Magnetization Reactance, X m, and Core Losses, p iron 5.26.7 No-Load and Rated Currents, I 0 and I n 5.26.8 Efficiency and Power Factor 5.26.9 Final Remarks 5.27 Dual stator windings induction generators (DWIG) 5.28 Summary 5.29 Proposed Problems References Chapter 6: Synchronous Machines: Steady State 6.1 Introduction: Applications and Topologies 6.2 Stator (Armature) Windings for SMs 6.2.1 Nonoverlapping (Concentrated) Coil SM Armature Windings 6.3 SM Rotors: Airgap Flux Density Distribution and EMF 6.3.1 PM Rotor Airgap Flux Density 6.4 Two-Reaction Principle via Generator Mode 6.5 Armature Reaction and Magnetization Reactances, X dm and X qm 6.6 Symmetric Steady-State Equations and Phasor Diagram 6.7 Autonomous Synchronous Generators 6.7.1 No-Load Saturation Curve/Lab 6.1 6.7.2 Short-Circuit Curve: (I sc (I F))/Lab 6.2 6.7.3 Load Curve: V s (I s)/Lab 6.3 6.8 Synchronous Generators at Power Grid/Lab 6.4 6.8.1 Active Power/Angle Curves: P e (δ V) 6.8.2 V-Shaped Curves 6.8.3 Reactive Power Capability Curves 6.9 Basic Static- and Dynamic-Stability Concepts 6.10 Unbalanced Load Steady State of SGs/Lab 6.5 6.10.1 Measuring X d, X q, Z −, and X 0 /Lab 6.6 6.11 Large Synchronous Motors 6.11.1 Power Balance 6.12 PM Synchronous Motors: Steady State 6.13 Load Torque Pulsations Handling by Synchronous Motors/Generators 6.14 Asynchronous Starting of SMs and Their Self-Synchronization to Power Grid 6.15 Single-Phase and Split-Phase Capacitor PM Synchronous Motors 6.15.1 Steady State of Single-Phase Cageless-Rotor PMSMs 6.16 Preliminary Design Methodology of a Three-Phase Small Automotive PMSM by Example 6.17 Single-Phase PM Autonomous a.c. Generator with Step-Capacitor Voltage Control: A Case Study 6.17.1 Introduction 6.17.2 The Proposed Configuration Characterization 6.17.3 Sample Step Capacitor Results 6.17.4 Experimental Effort 6.17.5 Experimental Effort 6.18 Summary 6.19 Proposed Problems References Index