دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5 ed.]
نویسندگان: Stephen J. Chapman
سری:
ISBN (شابک) : 9780073529547
ناشر: McGraw-Hill
سال نشر: 2012
تعداد صفحات: 680
[713]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 40 Mb
در صورت تبدیل فایل کتاب Electric Machinery Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول ماشین آلات الکتریکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سنت کیفیت و برتری ادامه دارد... Electric Machinery Fundamentals به دلیل پوشش قابل دسترس و دانشجوپسند موضوعات مهم در این زمینه همچنان متن پیشرو در بازار است. نوشته واضح چپمن موضوع را برای دانشجویان و مهندسان شاغل روشن می کند. در ویرایش پنجم، استفاده از MATLAB® در موارد مناسب در مثال ها و مشکلات گنجانده شده است. مشکلات هدفمند و قابل تاملی که شما به آن توجه کرده اید در این نسخه حفظ شده است. مشکلات جدیدی برای تقویت مجموعه مشکلات از قبل غنی گنجانده شده است. ویژگی های کلیدی نسخه پنجم • اهداف آموزشی به ابتدای هر فصل اضافه شده است تا یادگیری دانش آموزان افزایش یابد. • پوشش موضوعی انعطافپذیر اجازه میدهد که ابتدا مواد ac یا dc پوشش داده شوند. • انبوهی از مشکلات پایان فصل گنجانده شده است که بسیاری از آنها جدید یا تجدید نظر شده اند. این تجدید نظرها شامل مشکلات جدید ماشین سنکرون و موتور القایی بر اساس برگه های داده ماشین های واقعی است. • پوشش MATLAB در مسائل و مثال ها ادغام شده است. • پوشش به روز شده موضوعات در سراسر متن ظاهر می شود، از جمله افزایش پوشش روندهای جدید در صنعت، مانند استفاده از ژنراتورهای القایی برای دکل های تلفن همراه. Electric Machinery Fundamentals با وب سایتی به آدرس www.mhhe.com/chapman همراه است که راه حل هایی را برای مدرسان و همچنین کد منبع، ابزارهای متلب، مکملی در مقدمه ای بر الکترونیک قدرت و موارد دیگر ارائه می دهد.
The tradition of quality and excellence continues... Electric Machinery Fundamentals continues to be the market-leading machinery text due to its accessible, student-friendly coverage of important topics in the field. Chapman's clear writing illuminates the subject matter for students and practicing engineers. In the fifth edition, the use of MATLAB® is incorporated in examples and problems, where appropriate. The targeted and thought-provoking problems you have come to appreciate have been retained in this edition. New problems have been included to enhance the already rich problem sets. Key Features of the Fifth Edition • Learning objectives have been added to the beginning of each chapter to enhance student learning. • Flexible topic coverage allows either ac or dc material to be covered first. • A wealth of end-of-chapter problems are included, many of them new or revised. These revisions include new synchronous machine and induction motor problems based on the data sheets of real machines. • MATLAB coverage is integrated into problems and examples. • Updated coverage of topics appears throughout the text, including increased coverage of new trends in the industry, such as the use of induction generators for cell phone towers. Electric Machinery Fundamentals is accompanied by a website found at www.mhhe.com/chapman, which provides solutions for instructors, as well as source code, MATLAB tools, a supplement on Introduction to Power Electronics, and more.
Chapter 1. Introduction to Machinery Principles Objectives 1.1 Electrical Machines, Transformers, and Daily Life 1.2 A Note on Units and Notation Notation 1.3 Rotational Motion, Newton’s Law, and Power Relationships Angular Position θ Angular Velocity ω Angular Acceleration α Torque τ Newton’s Law of Rotation Work W Power P 1.4 The Magnetic Field Production of a Magnetic Field Magnetic Circuits Magnetic Behavior of Ferromagnetic Materials Energy Losses in a Ferromagnetic Core 1.5 Faraday’s Law—Induced Voltage from a Time-Changing Magnetic Field 1.6 Production of Induced Force on a Wire 1.7 Induced Voltage on a Conductor Moving in a Magnetic Field 1.8 The Linear DC Machine—A Simple Example Starting the Linear DC Machine The Linear DC Machine as a Motor The Linear DC Machine as a Generator Starting Problems with the Linear Machine 1.9 Real, Reactive, and Apparent Power in Single-Phase AC Circuits Alternative Forms of the Power Equations Complex Power The Relationships between Impedance Angle, Current Angle, and Power The Power Triangle 1.10 Summary Chapter 2. Transformers Objectives 2.1 Why Transformers Are Important to Modern Life 2.2 Types and Construction of Transformers 2.3 The Ideal Transformer Power in an Ideal Transformer Impedance Transformation through a Transformer Analysis of Circuits Containing Ideal Transformers 2.4 Theory of Operation of Real Single-Phase Transformers The Voltage Ratio across a Transformer The Magnetization Current in a Real Transformer The Current Ratio on a Transformer and the Dot Convention 2.5 The Equivalent Circuit of a Transformer The Exact Equivalent Circuit of a Real Transformer Approximate Equivalent Circuits of a Transformer Determining the Values of Components in the Transformer Model 2.6 The Per-Unit System of Measurements 2.7 Transformer Voltage Regulation and Efficiency The Transformer Phasor Diagram Transformer Efficiency 2.8 Transformer Taps and Voltage Regulation 2.9 The Autotransformer Voltage and Current Relationships in an Autotransformer The Apparent Power Rating Advantage of Autotransformers The Internal Impedance of an Autotransformer 2.10 Three-Phase Transformers Three-Phase Transformer Connections Wye-wye Connection Wye-delta Connection Delta-wye Connection Delta-delta Connection The Per-Unit System for Three-Phase Transformers 2.11 Three-Phase Transformation Using Two Transformers The Open-Δ (or V-V) Connection The Open-Wye—Open-Delta Connection The Scott-T Connection The Three-Phase T Connection 2.12 Transformer Ratings and Related Problems The Voltage and Frequency Ratings of a Transformer The Apparent Power Rating of a Transformer The Problem of Current Inrush The Transformer Nameplate 2.13 Instrument Transformers 2.14 Summary Chapter 3. AC Machinery Fundamentals Learning Objectives 3.1 A Simple Loop in a Uniform Magnetic Field The Voltage Induced in a Simple Rotating Loop The Torque Induced in a Current-Carrying Loop 3.2 The Rotating Magnetic Field Proof of the Rotating Magnetic Field Concept The Relationship between Electrical Frequency and the Speed of Magnetic Field Rotation Reversing the Direction of Magnetic Field Rotation 3.3 Magnetomotive Force and Flux Distribution on AC Machines 3.4 Induced Voltage in AC Machines The Induced Voltage in a Coil on a Two-Pole Stator The Induced Voltage in a Three-Phase Set of Coils The RMS Voltage in a Three-Phase Stator 3.5 Induced Torque in an AC Machine 3.6 Winding Insulation in an AC Machine 3.7 AC Machine Power Flows and Losses The Losses in AC Machines Electrical or Copper Losses Core Losses Mechanical Losses Stray Losses (or Miscellaneous Losses) The Power-Flow Diagram 3.8 Voltage Regulation and Speed Regulation 3.9 Summary Chapter 4. Synchronous Generators Learning Objectives 4.1 Synchronous Generator Construction 4.2 The Speed of Rotation of a Synchronous Generator 4.3 The Internal Generated Voltage of a Synchronous Generator 4.4 The Equivalent Circuit of a Synchronous Generator 4.5 The Phasor Diagram of a Synchronous Generator 4.6 Power and Torque in Synchronous Generators 4.7 Measuring Synchronous Generator Model Parameters The Short-Circuit Ratio 4.8 The Synchronous Generator Operating Alone The Effect of Load Changes on a Synchronous Generator Operating Alone Example Problems 4.9 Parallel Operation of AC Generators The Conditions Required for Paralleling The General Procedure for Paralleling Generators Frequency-Power and Voltage-Reactive Power Characteristics of a Synchronous Generator Operation of Generators in Parallel with Large Power Systems Operation of Generators in Parallel with Other Generators of the Same Size 4.10 Synchronous Generator Transients Transient Stability of Synchronous Generators Short-Circuit Transients in Synchronous Generators 4.11 Synchronous Generator Ratings The Voltage, Speed, and Frequency Ratings Apparent Power and Power-Factor Ratings Synchronous Generator Capability Curves Short-Time Operation and Service Factor 4.12 Summary Chapter 5. Synchronous Motors Learning Objectives 5.1 Basic Principles of Motor Operation The Equivalent Circuit of a Synchronous Motor The Synchronous Motor from a Magnetic Field Perspective 5.2 Steady-State Synchronous Motor Operation The Synchronous Motor Torque-Speed Characteristic Curve The Effect of Load Changes on a Synchronous Motor The Effect of Field Current Changes on a Synchronous Motor The Synchronous Motor and Power-Factor Correction The Synchronous Capacitor or Synchronous Condenser 5.3 Starting Synchronous Motors Motor Starting by Reducing Electrical Frequency Motor Starting with an External Prime Mover Motor Starting by Using Amortisseur Windings The Effect of Amortisseur Windings on Motor Stability 5.4 Synchronous Generators and Synchronous Motors 5.5 Synchronous Motor Ratings 5.6 Summary Chapter 6. Induction Motors Learning Objectives 6.1 Induction Motor Construction 6.2 Basic Induction Motor Concepts The Development of Induced Torque in an Induction Motor The Concept of Rotor Slip The Electrical Frequency on the Rotor 6.3 The Equivalent Circuit of an Induction Motor The Transformer Model of an Induction Motor The Rotor Circuit Model The Final Equivalent Circuit 6.4 Power and Torque in Induction Motors Losses and the Power-Flow Diagram Power and Torque in an Induction Motor Separating the Rotor Copper Losses and the Power Converted in an Induction Motor’s Equivalent Circuit 6.5 Induction Motor Torque-Speed Characteristics Induced Torque from a Physical Standpoint The Derivation of the Induction Motor Induced-Torque Equation Comments on the Induction Motor Torque-Speed Curve Maximum (Pullout) Torque in an Induction Motor 6.6 Variations in Induction Motor Torque-Speed Characteristics Control of Motor Characteristics by Cage Rotor Design Deep-Bar and Double-Cage Rotor Designs Induction Motor Design Classes Design Class A Design Class B Design Class C Design Class D 6.7 Trends in Induction Motor Design 6.8 Starting Induction Motors Induction Motor Starting Circuits 6.9 Speed Control of Induction Motors Induction Motor Speed Control by Pole Changing Speed Control by Changing the Line Frequency Speed Control by Changing the Line Voltage Speed Control by Changing the Rotor Resistance 6.10 Solid-State Induction Motor Drives Frequency (Speed) Adjustment A Choice of Voltage and Frequency Patterns Independently Adjustable Acceleration and Deceleration Ramps Motor Protection 6.11 Determining Circuit Model Parameters The No-Load Test The DC Test for Stator Resistance The Locked-Rotor Test 6.12 The Induction Generator The Induction Generator Operating Alone Induction Generator Applications 6.13 Induction Motor Ratings 6.14 Summary Chapter 7. DC Machinery Fundamentals Learning Objectives 7.1 A Simple Rotating Loop between Curved Pole Faces The Voltage Induced in a Rotating Loop Getting DC Voltage Out of the Rotating Loop The Induced Torque in the Rotating Loop 7.2 Commutation in a Simple Four-Loop DC Machine 7.3 Commutation and Armature Construction in Real DC Machines The Rotor Coils Connections to the Commutator Segments The Lap Winding The Wave Winding The Frog-Leg Winding 7.4 Problems with Commutation in Real Machines Armature Reaction L di/dt Voltages Solutions to the Problems with Commutation Brush Shifting Commutating Poles or Interpoles Compensating Windings 7.5 The Internal Generated Voltage and Induced Torque Equations of Real DC Machines 7.6 The Construction of DC Machines Pole and Frame Construction Rotor or Armature Construction Commutator and Brushes Winding Insulation 7.7 Power Flow and Losses in DC Machines The Losses in DC Machines Electrical or Copper Losses Brush Losses Core Losses Mechanical Losses Stray Losses (or Miscellaneous Losses) The Power-Flow Diagram 7.8 Summary Chapter 8. DC Motors and Generators Learning Objectives 8.1 Introduction to DC Motors 8.2 The Equivalent Circuit of a DC Motor 8.3 The Magnetization Curve of a DC Machine 8.4 Separately Excited and Shunt DC Motors The Terminal Characteristic of a Shunt DC Motor Nonlinear Analysis of a Shunt DC Motor Speed Control of Shunt DC Motors Changing the Field Resistance A Warning About Field Resistance Speed Control Changing the Armature Voltage Inserting a Resistor in Series with the Armature Circuit The Effect of an Open Field Circuit 8.5 The Permanent-Magnet DC Motor 8.6 The Series DC Motor Induced Torque in a Series DC Motor The Terminal Characteristic of a Series DC Motor Speed Control of Series DC Motors 8.7 The Compounded DC Motor The Torque-Speed Characteristic of a Cumulatively Compounded DC Motor The Torque-Speed Characteristic of a Differentially Compounded DC Motor The Nonlinear Analysis of Compounded DC Motors Speed Control in the Cumulatively Compounded DC Motor 8.8 DC Motor Starters DC Motor Problems on Starting DC Motor Starting Circuits 8.9 The Ward-Leonard System and Solid-State Speed Controllers Protection Circuit Section Start/Stop Circuit Section High-Power Electronics Section Low-Power Electronics Section 8.10 DC Motor Efficiency Calculations 8.11 Introduction to DC Generators 8.12 The Separately Excited Generator The Terminal Characteristic of a Separately Excited DC Generator Control of Terminal Voltage Nonlinear Analysis of a Separately Excited DC Generator 8.13 The Shunt DC Generator Voltage Buildup in a Shunt Generator The Terminal Characteristic of a Shunt DC Generator Voltage Control for a Shunt DC Generator The Analysis of Shunt DC Generators 8.14 The Series DC Generator The Terminal Characteristic of a Series Generator 8.15 The Cumulatively Compounded DC Generator The Terminal Characteristic of a Cumulatively Compounded DC Generator Voltage Control of Cumulatively Compounded DC Generators Analysis of Cumulatively Compounded DC Generators 8.16 The Differentially Compounded DC Generator The Terminal Characteristic of a Differentially Compounded DC Generator Voltage Control of Differentially Compounded DC Generators Graphical Analysis of a Differentially Compounded DC Generator 8.17 Summary Chapter 9. Single-Phase and Special-Purpose Motors Learning Objectives 9.1 The Universal Motor Applications of Universal Motors Speed Control of Universal Motors 9.2 Introduction to Single-Phase Induction Motors The Double-Revolving-Field Theory of Single-Phase Induction Motors The Cross-Field Theory of Single-Phase Induction Motors 9.3 Starting Single-Phase Induction Motors Split-Phase Windings Capacitor-Start Motors Permanent Split-Capacitor and Capacitor-Start, Capacitor-Run Motors Shaded-Pole Motors Comparison of Single-Phase Induction Motors 9.4 Speed Control of Single-Phase Induction Motors 9.5 The Circuit Model of a Single-Phase Induction Motor Circuit Analysis with the Single-Phase Induction Motor Equivalent Circuit 9.6 Other Types of Motors Reluctance Motors Hysteresis Motors Stepper Motors Brushless DC Motors 9.7 Summary Appendix A. Three-Phase Circuits A.1 Generation of Three-Phase Voltages and Currents A.2 Voltages and Currents in a Three-Phase Circuit Voltages and Currents in the Wye (Y) Connection Voltages and Currents in the Delta (Δ) Connection A.3 Power Relationships in Three-Phase Circuits Three-Phase Power Equations Involving Phase Quantities Three-Phase Power Equations Involving Line Quantities A.4 Analysis of Balanced Three-Phase Systems A.5 One-Line Diagrams A.6 Using the Power Triangle Appendix B. Coil Pitch and Distributed Windings B.1 The Effect of Coil Pitch on AC Machines The Pitch of a Coil The Induced Voltage of a Fractional-Pitch Coil Harmonic Problems and Fractional-Pitch Windings B.2 Distributed Windings in AC Machines The Breadth or Distribution Factor The Generated Voltage Including Distribution Effects Tooth or Slot Harmonics B.3 Summary Appendix C. Salient-Pole Theory of Synchronous Machines C.1 Development of the Equivalent Circuit of a Salient-Pole Synchronous Generator C.2 Torque and Power Equations of a Salient-Pole Machines Appendix D. Tables of Constants and Conversion Factors