دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Zhu Xiao, Ping Zhao, Xingxia Dai, Jinmei Shu سری: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 478 ISBN (شابک) : 9783031289897, 9783031289903 ناشر: Springer سال نشر: 2023 تعداد صفحات: 326 [327] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت تبدیل فایل کتاب Edge Computing and IoT: Systems, Management and Security: Third EAI International Conference, ICECI 2022 Virtual Event, December 13–14, 2022 Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات لبه و اینترنت اشیا: سیستم ها، مدیریت و امنیت: سومین کنفرانس بین المللی EAI، رویداد مجازی ICECI 2022، 13 تا 14 دسامبر 2022 مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری پس از کنفرانس سومین کنفرانس بینالمللی رایانش لبه و اینترنت اشیا، ICECI 2022 است که در 13 تا 14 دسامبر 2022 در چانگشا، چین برگزار شد. به دلیل بیماری همه گیر COVID-19 این کنفرانس به صورت مجازی برگزار شد. انفجار دادههای بزرگ تولید شده توسط دستگاههای لبهای در همه جا، انگیزه پیدایش استفاده از سیستمهای یادگیری ماشینی برای خدمات محاسبات لبه و اینترنت اشیا (IoT) است. تکنیکهای یادگیری ماشین راهحل امیدوارکنندهای را برای ساختن سیستمهای IoT و ایجاد نوآوری با سرعت سریع به صنعت ارائه میکنند. 22 مقاله کامل ICECI 2022 از بین 76 مورد ارسالی انتخاب شدند و نتایج و ایدههایی را در زمینه محاسبات لبه و اینترنت اشیا ارائه کردند.
This book constitutes the refereed post-conference proceedings of the Third International Conference on Edge Computing and IoT, ICECI 2022, held in December 13-14, 2022 in Changsha, China. Due to COVID-19 pandemic the conference was held virtually. The explosion of the big data generated by ubiquitous edge devices motivates the emergence of applying machine learning systems for edge computing and Internet of Things (IoT) services. Machine learning techniques are delivering a promising solution to the industry for building IoT systems and to make innovation at a rapid pace. The 22 full papers of ICECI 2022 were selected from 76 submissions and present results and ideas in the area of edge computing and IoT.
Preface Organization Contents Models and Methods for Data Management in IoT Forecasting the Temperature of BEV Battery Pack Based on Field Testing Data 1 Introduction 2 Approach 2.1 The IoT Device 3 Data Preparation 3.1 Data Cleansing 3.2 Feature Engineering 3.3 Data Windowing 4 Models 4.1 Model Defines 4.2 Hyperparameter Searching 5 Results and Discussion 5.1 Justification of the Best Model 5.2 Ablation Study 5.3 Dataset Comparison 5.4 Statistical Learning Comparison 5.5 Limitations and Reflection 5.6 Capacity Fading 6 Concluding Remark References The Data Exchange Protocol over Multi-chain Blockchain Using Zero-Knowledge Proof 1 Introduction 2 Background and Related Work 2.1 Merkle Tree 2.2 Blockchain 2.3 Zero-Knowledge Proof 2.4 Related Works 3 Preliminaries 3.1 Cryptographic Building Blocks 3.2 Concrete Design 3.3 Transactions 3.4 Data 3.5 zk-SNARKs for Receiving Data 3.6 Security 4 Protocol Overview 5 Conclusion References A Hybrid Task Offloading and Service Cache Scheme for Vehicular Edge Computing 1 Introduction 2 Related Work 3 System Model 3.1 Task Offloading Model 3.2 Dynamic Service Caching and Task Offloading Decision Adjustment 4 Simulation Results and Analysis 5 Conclusion References On Enhancing Transmission Performance for IoV Based on Improved Greedy Algorithm 1 Introduction 1.1 V2V Transmission 1.2 Greedy Algorithm 2 Algorithm System Model Performance 2.1 Model1 2.2 Model2 2.3 Mode3 2.4 Model4 3 Result and Discussion 3.1 Single Range and Mixed Range 3.2 New Algorithm Based on Volume 4 Conclusion References Precise Segmentation on Poly-Yolo, YoloV5 and FCN 1 Introduction 2 Related Work 2.1 Introduce of FCN 2.2 Evolution of YOLO 2.3 Limitations and Improvements 3 Comparative Methodology 3.1 Mathematics of FCN 3.2 Mathematics of YOLO 3.3 Mathematics of Poly-YOLO 4 Experiments 4.1 FCN8 4.2 YOLO 4.3 Poly-YOLO 5 Conclusion References Adaptive Approaches to Manage Energy Consumption and Security of Systems Research on DAG Based Consensus Mechanism for Adjustable Load Metering Data 1 Introduction 2 Related Work 2.1 Block-Based BDAG Technology 2.2 Transaction-Based TDAG Technology 3 Improved DAG Distributed Ledger Technology for Adjustable Load Metering Data 4 Distribution of Weight Coefficients for Partitioned Blocks 4.1 Node Punishment and Reward Mechanism 4.2 Transaction Verification 4.3 Determination of Transaction Sequence and Main Chain 5 Containerized Edge Computing Service Enabling TDAG Distributed Ledger 6 Conclusions References A Detection and Information Processing Model Based on an Automatic Mechanism for Tax Payment Control in Developing Countries 1 Introduction 1.1 Literature Review 1.2 Objectives and Contributions 2 Description of the Used Circuit Tools for Parking Tax Payment Control 2.1 The Radio Frequency Identification (RFID) Components and Operation 2.2 The Servomotor 2.3 The Light-Emitting Diode (LED) 2.4 The Push Button 3 The Proposed Detection and Information Processing System Based on an Automatic Mechanism for Parking Tax Payment Control 4 Frame Design and Development 4.1 Materials and Method 4.2 Results and Discussions 5 Conclusion and Future Works References IEC-FOF: An Industrial Electricity Consumption Forecasting and Optimization Framework 1 Introduction 2 Related Work 2.1 Electricity Consumption Forecasting 2.2 Time Series Pattern Recognition 3 System Overview 4 Methods 4.1 Electricity Consumption Forecast 4.2 Optimization 5 Experiments 5.1 Implementation 5.2 Forecasting Performances 5.3 Optimization Effectiveness Evaluation 6 Discussion 7 Conclusion References Demons Hidden in the Light: Unrestricted Adversarial Illumination Attacks 1 Introduction 2 Related Works 2.1 Adversarial Attacks with p-norm Constraints 2.2 Unconstrained Adversarial Attacks 2.3 Defense Against Adversarial Attacks 3 Adversarial Illumination Attack (AIA) 3.1 Adversarial Planckian Jitter 3.2 Effectiveness of AIA: A Causal Perspective 3.3 Image Gradient Regularization 4 Experiments 4.1 Experimental Setup 4.2 White-Box and Black-Box Adversarial Attack 4.3 Image Quality 4.4 Attack Effect Under Data Preprocessing 4.5 Attack Effect Facing Defense Models 4.6 Ablation Study 5 Conclusion References Edge Intelligence Based Garbage Classification Detection Method 1 Introduction 2 Related Work 2.1 Edge Intelligence Research 2.2 Smart City Research 2.3 Convolutional Neural Network Model 3 Experimental Model 3.1 Stem Block 3.2 Two-Way Dense Layer 3.3 Transition Layer Without Compression 3.4 Dynamic Number of Channels of Bottleneck Layer 3.5 Composite Function 3.6 General Structure of the PeleeNet 4 Process Design 4.1 Method Overview 4.2 Data Collection 4.3 Mobile Edge Processing 4.4 Image Detection Based on Pelee Model 5 Conclusion References Mobile Computing in Wireless Networks Evaluation of Higher Education System 1 Introduction 1.1 Problem of Background 1.2 Restatement of Problem 1.3 Overview of Our Work 2 Assumptions 3 Establishing an Evaluation Model 3.1 Index Selection 3.2 Analytic Hierarchy Process 4 Evaluation of Higher Education System Evaluation Model 4.1 Example: American 4.2 Example: Mexico 5 Attainable and Reasonable System of Higher Education for UK 5.1 Evaluation Model Design 5.2 Evaluate the Results and Compare Them 6 Policy Proposal and Implementation Schedule 6.1 Multiple Linear Regression for the Coefficient 6.2 Multiple Linear Regression for the Coefficient 6.3 Policy Presentation 6.4 Implementation Schedule 7 First Section Validation of Policy Effectiveness and Its Impact on Reality 7.1 Validation of Effectiveness 7.2 The Impact on Reality 8 Vision of the Future References Defense Mechanisms Against Audio Adversarial Attacks: Recent Advances and Future Directions 1 Introduction 2 Background 2.1 Automatic Speech and Speaker Recognition Systems 2.2 Adversarial Example 3 Defenses Against Audio Adversarial Attacks 3.1 Adversarial Examples Preservation 3.2 Adversarial Examples Rejection 4 Future Direction 5 Conclusion References An Empirical Study of Worldwide Plastic Waste Mitigation 1 Introduction 2 Preliminary 3 Maximum Plastics Mitigation Volume (MPMV) Model 4 Plastics Mitigation Capability Assessment Model 4.1 Indicator Selection 4.2 Data Normalization 4.3 Weight Determination 4.4 The Result 5 Target for the Level of Plastic Waste 5.1 Outline 5.2 The Process of Setting Targets 5.3 Impacts for Achieving Such Levels 6 Equity Issues Model 6.1 Overview 6.2 An Improved Approach 7 Evaluation 7.1 Evaluation on MPMV Model 7.2 Evaluation on PMC Model 7.3 Advantage of Intervention in PMC Model 7.4 Evaluation on Equity Issues Model 8 Discussions References Prediction for Surface Subsidence of Shield Construction in Water-Rich Sand Egg Stratum Based on Edge Intelligence 1 Introduction 2 The Proposed Method 2.1 Edge Intelligent System Architecture Based on iFogSim 2.2 Round-Trip Time 2.3 Total Execution Cost 2.4 Pearson Correlation Coefficient 2.5 Support Vector Regression 2.6 Support Vector Machine Regression Prediction Model 3 Experiments 3.1 Engineering Background 3.2 Data Source Description 3.3 Test Method 4 Experimental Results 4.1 Round-Trip Time 4.2 Total Execution Cost 4.3 Comparison of Effects with Different Kernel Functions 5 Conclusions References Highly Accurate Dynamic Gesture Recognition Method Based on Edge Intelligence 1 Introduction 2 Gesture Interaction Design 2.1 Holistic Approach 2.2 Gesture Interaction Processing 3 Intelligent Processing Solutions at the Edge 3.1 YOLOv5 Algorithm 3.2 Improved YOLOv5 Algorithm 3.3 Coordinate Attention 3.4 Improved Overall Network Model 4 Experimental Environment and Experimental Data 4.1 Training of Models 4.2 Comparison of Different Algorithms 5 Conclusion References Distributed Computing in IoT Adversarial Example Attacks in Internet of Things (IoT) 1 Introduction 2 Background 2.1 Internet of Things (IoT) 2.2 Adversarial Example 3 Adversarial Example Attacks Scenario in IoT 4 Adversarial Example Attack Countermeasures 4.1 Learning with Reject Option 4.2 Model Understanding Through Subspace Explanation 4.3 Software Testing 5 Conclusion References Training Node Screening in Decentralized Trusted Federated Learning 1 Introduction 2 Related Work 3 Decentralized Federated Learning Architecture 4 Supervisory Mechanism for Training Behavior of Worker Nodes Based on Digital Watermarking 4.1 Overall Architecture 4.2 Watermarking Dataset Construction 4.3 Watermark Embedding 4.4 Worker Training Behavior Check 4.5 Watermark Dataset Replacement 5 Feasibility Analysis of Training Behavior Monitoring Mechanism 6 Experimental Design and Analysis of Results 6.1 Experimental Design 6.2 Analysis of Experimental Results 7 Summary References Exploration and Practice of Course Homework Metaverse Based on Extended Reality Under Edge Computing 1 Introduction 2 Related Work 2.1 Overview and Research Status of Extended Reality (XR) 2.2 Bloom Model 3 Metaverse and Edge Computing Fusion Architecture 3.1 Overall Architecture Design 3.2 Service Support System 3.3 Infrastructure Layer 4 Metaverse Data Analysis 5 Research Design 5.1 Extended Reality Based Metaverse of Course Homework 5.2 Interaction Derived from VR and MR 5.3 Scenes Presented in AR and MR 5.4 Master Slave Multi Chain Design 5.5 Distributed Security Architecture Based on Master-Slave Multi Chain 5.6 Metaverse Comprehensive Evaluation System 5.7 Application Scenarios of the Coursework Metaverse 6 Practical Challenges for Metaverse Educational Applications 7 Future Trends in Metaverse Educational Applications References Federated Learning Based User Scheduling for Real-Time Multimedia Tasks in Edge Devices 1 Introduction 1.1 Background 1.2 Challenge 2 Related Review 3 Data and Algorithm 3.1 Data 3.2 Algorithm 4 Experiments 4.1 Evaluation Metric 4.2 Result 5 Conclusion References A Co-caching Strategy for Edges Based on Federated Learning and Regional Prevalence 1 Introduction 2 Relevant Domestic and International Studies 3 Caching Strategy Design 3.1 Regional Prevalence Prediction 3.2 Cache Optimization and Collaborative Model 3.3 Co-caching Data Block Value Optimization 4 Experiment and Analysis 5 Conclusion References LSTM-DAM: Malicious Network Traffic Prediction for Cloud Manufacturing System 1 Introduction 2 Related Work 3 Model Design 3.1 Feature Attention Mechanism 3.2 Temporal Attention Mechanism 3.3 LSTM-DAM Model 4 Experiments Evaluation 4.1 Datasets 4.2 Metrics 4.3 Experiment Setup 4.4 Result Evaluation 4.5 Generalization Analysis 5 Conclusion References Author Index