ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Econometrics

دانلود کتاب اقتصاد سنجی

Econometrics

مشخصات کتاب

Econometrics

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0691010188, 9780691010182 
ناشر: Princeton University Press 
سال نشر: 2000 
تعداد صفحات: 686 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Econometrics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اقتصاد سنجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اقتصاد سنجی

اقتصاد سنجی هایاشی وعده می دهد که ترکیب بزرگ بعدی اقتصاد سنجی مدرن باشد. سال اول Ph.D را معرفی می کند. دانشجویان به مطالب استاندارد اقتصاد سنجی فارغ التحصیلان از دیدگاه مدرن. تمام مطالب استاندارد لازم برای درک تکنیک های اصلی اقتصاد سنجی از حداقل مربعات معمولی از طریق هم انباشتگی را پوشش می دهد. این کتاب همچنین در توسعه تجزیه و تحلیل سری زمانی و مقطعی به طور کامل متمایز است و به خواننده چارچوبی واحد برای درک و یکپارچه‌سازی نتایج می‌دهد. تمام تکنیک‌های تخمینی که احتمالاً می‌توانند در دوره تحصیلات تکمیلی سال اول تدریس شوند، به جز حداکثر احتمال، به عنوان موارد خاص GMM (روش‌های کلی لحظه‌ها) تلقی می‌شوند. برآوردگرهای حداکثر احتمال برای انواع مدل ها (مانند پروبیت و توبیت) در فصلی جداگانه جمع آوری شده اند. این ترتیب دانش‌آموزان را قادر می‌سازد تا تکنیک‌های مختلف برآورد را به شیوه‌ای کارآمد بیاموزند. هشت فصل از ده فصل شامل یک کاربرد تجربی جدی است که از اقتصاد کار، سازمان صنعتی، مالی داخلی و بین‌المللی و اقتصاد کلان استخراج شده است. این تمرین‌های تجربی در پایان هر فصل، تجربه عملی را برای دانش‌آموزان در استفاده از تکنیک‌های پوشش داده شده در فصل فراهم می‌کند. این نمایشگاه دقیق است و در عین حال برای دانش‌آموزانی که دانش عملی جبر خطی بسیار ابتدایی و تئوری احتمالات را دارند قابل دسترس است. تمام نتایج به صورت گزاره بیان می‌شوند تا دانش‌آموزان بتوانند نکات بحث و همچنین شرایطی را که آن نتایج تحت آن است، ببینند. بیشتر گزاره ها در متن اثبات شده اند. برای کسانی که قصد دارند پایان نامه ای در موضوعات کاربردی بنویسند، کاربردهای تجربی کتاب راه خوبی برای یادگیری نحوه انجام تحقیقات تجربی است. برای افرادی که تمایل به تئوری دارند، درمان بدون سازش با تکنیک های پایه آمادگی خوبی برای دوره های تئوری پیشرفته تر است.


توضیحاتی درمورد کتاب به خارجی

Hayashi's Econometrics promises to be the next great synthesis of modern econometrics. It introduces first year Ph.D. students to standard graduate econometrics material from a modern perspective. It covers all the standard material necessary for understanding the principal techniques of econometrics from ordinary least squares through cointegration. The book is also distinctive in developing both time-series and cross-section analysis fully, giving the reader a unified framework for understanding and integrating results.Econometrics has many useful features and covers all the important topics in econometrics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models (such as probit and tobit) are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient manner. Eight of the ten chapters include a serious empirical application drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises at the end of each chapter provide students a hands-on experience applying the techniques covered in the chapter. The exposition is rigorous yet accessible to students who have a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions, so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text.For those who intend to write a thesis on applied topics, the empirical applications of the book are a good way to learn how to conduct empirical research. For the theoretically inclined, the no-compromise treatment of the basic techniques is a good preparation for more advanced theory courses.



فهرست مطالب

Cover  ... 1
Copyright Page  ... 2
Preface  ... 3
	Prerequisites  ... 3
	Organization of the Book  ... 3
	Designing a Course Out of the Book  ... 4
	Review Questions and Analytical Exercises  ... 5
	Empirical Exercises  ... 5
	Mathematical Notation  ... 6
	Acknowledgments  ... 6
Contents  ... 8
CHAPTER 1 Finite-Sample Properties of  ... 20
	ABSTRACT  ... 20
	1.1 The Classical Linear Regression Model  ... 20
		The Linearity Assumption  ... 21
		Iqlatrix Notation  ... 23
		The Strict Exogeneity Assumption  ... 24
		Implications of Strict Exogeneity  ... 25
		Strict Exogeneity in Time-Series Models  ... 26
		Other Assumptions of the Model  ... 27
		The Classical Regression Model for Random Samples  ... 29
		\"Fixed\" Regressors  ... 30
		QUESTIONS FOR REVIEW  ... 30
	1.2 The Algebra of Least Squares  ... 32
		OLS Minimizes the Sum of Squared Residuals  ... 32
		Normal Equations  ... 33
		Two Expressions for the OLS Estimator  ... 35
		More Concepts and Algebra  ... 35
		Influential Analysis (optional)  ... 38
		A Note on the Computation of OLS Estimates  ... 40
		QUESTIONS FOR REVIEW  ... 42
	1.3 Finite-Sample Properties of OLS  ... 44
		Finite-Sample Distribution of b  ... 44
		Finite-Sample Properties of s^2  ... 47
		Estimate of Var(b|X)  ... 48
		QUESTIONS FOR REVIEW  ... 48
	1.4 Hypothesis Testing under Normality  ... 50
		Normally Distributed Error Terms  ... 50
		Testing Hypotheses about Individual Regression Coefficients  ... 52
		Decision Rule for the t-Test  ... 54
		Confidence Interval  ... 55
		Linear Hypotheses  ... 56
		The F-Test  ... 57
		A More Convenient Expression for F  ... 59
		t versus F  ... 60
		An Example of a Test Statistic Whose Distribution Depends on X  ... 62
		QUESTIONS FOR REVIEW  ... 63
	1.5 Relation to Maximum Likelihood  ... 64
		The Maximum Likelihood Principle  ... 64
		Conditional versus Unconditional Likelihood  ... 64
		The Log Likelihood for the Regression Model  ... 65
		ML via Concentrated Likelihood  ... 65
		Cramer-Rao Bound for the Classical Regression Model  ... 66
		The F-Test as a Likelihood Ratio Test  ... 69
		Quasi-Maximum Likelihood  ... 70
		QUESTIONS FOR REVIEW  ... 70
	1.6 Generalized Least Squares (GLS)  ... 71
		Consequence of Relaxing Assumption 1.4  ... 72
		Efficient Estimation with Known V  ... 72
		A Special Case: Weighted Least Squares (WLS)  ... 75
		Limiting Nature of GLS  ... 75
		QUESTIONS FOR REVIEW  ... 76
	1.7 Application: Returns to Scale in Electricity Supply  ... 77
		The Electricity Supply Industry  ... 77
		The Data  ... 77
		Why Do We Need Econometrics? 78
		The Cobb-Douglas Technology  ... 79
		How Do We Know Things Are Cobb-Douglas? 80
		Are the OLS Assumptions Satisfied? 81
		Restricted Least Squares  ... 82
		Testing the Homogeneity of the Cost Function  ... 82
		Detour: A Cautionary Note on R^2  ... 84
		Testing Constant Returns to Scale  ... 84
		Importance of Plotting Residuals  ... 85
		Subsequent Developments  ... 85
		QUESTIONS FOR REVIEW  ... 87
	PROBLEM SET FOR CHAPTER 1  ... 88
		ANALYTICAL EXERCISES  ... 88
		MONTE CARLO EXERCISES  ... 98
		ANSWERS TO SELECTED QUESTIONS  ... 101
CHAPTER 2 Large-Sample Theory  ... 105
	ABSTRACT  ... 105
	2.1 Review of Limit Theorems for Sequences of Random Variables  ... 105
		Various Modes of Convergence  ... 106
			Convergence in Probability  ... 106
			Almost Sure Convergence  ... 106
			Convergence in Mean Square  ... 107
			Convergence in Distribution  ... 107
		Three Useful Results  ... 109
		Viewing Estimators as Sequences of Random Variables  ... 111
		Laws of Large Numbers and Central Limit Theorems  ... 112
		QUESTIONS FOR REVIEW  ... 113
	2.2 Fundamental Concepts in Time-Series Analysis  ... 114
		Need for Ergodic Stationarity  ... 114
		Various Classes of Stochastic Processes  ... 115
		Different Formulation of Lack of Serial Dependence  ... 123
		QUESTIONS FOR REVIEW  ... 125
	2.3 Large-Sample Distribution of the OLS Estimator  ... 126
		The Model  ... 126
		Asymptotic Distribution of the OLS Estimator  ... 130
		s^2 Is Consistent  ... 132
		QUESTIONS FOR REVIEW  ... 133
	2.4 Hypothesis Testing  ... 134
		Testing Linear Hypotheses  ... 134
		The Test Is Consistent  ... 136
		Asymptotic Power  ... 137
		Testing Nonlinear Hypotheses  ... 138
		QUESTIONS FOR REVIEW  ... 140
	2.5 Estimating E(xix) Consistently  ... 140
		Using Residuals for the Errors  ... 140
		Data Matrix Representation of S  ... 142
		Finite-Sample Considerations  ... 142
		QUESTIONS FOR REVIEW  ... 143
	2.6 Implications of Conditional Homoskedasticity  ... 143
		Conditional versus Unconditional Homoskedasticity  ... 143
		Reduction to Finite-Sample Formulas  ... 144
		Large-Sample Distribution of t and F Statistics  ... 145
		Variations of Asymptotic Tests under C. onditional Homoskedasticity  ... 145
		QUESTIONS FOR REVIEW  ... 147
	2.7 Testing Conditional Homoskedasticity  ... 148
		QUESTION FOR REVIEW  ... 150
	2.8 Estimation with Parameterized Conditional Heteroskedasticity (optional)  ... 150
		The Functional Form  ... 150
		WLS with Known α 151
		Regression of ei^2 on zi Provides a Consistent Estimate of α 152
		WLS with Estimated α 153
		OLS versus WLS  ... 154
		QUESTION FOR REVIEW  ... 154
	2.9 Least Squares Projection  ... 154
		Optimally Predicting the Value of the Dependent Variable  ... 155
		Best Linear Predictor  ... 156
		OLS Consistently Estimates the Projection Coefficients  ... 157
		QUESTION FOR REVIEW  ... 157
	2.10 Testing for Serial Correlation  ... 158
		Box-Pierce and Ljung-Box  ... 159
		Sample Autocorrelations Calculated from Residuals  ... 161
		Testing with Predetermined, but Not Strictly Exogenous, Regressors  ... 163
		An Auxiliary Regression-Based Test  ... 164
		QUESTION FOR REVIEW  ... 166
	2.11 Application: Rational Expectations Econometrics  ... 167
		The Efficient Market Hypotheses  ... 167
		Testable Implications  ... 169
		Testing for Serial Correlation  ... 170
		Is the Nominal Interest Rate the Optimal Predictor? 173
		Rt Is Not Strictly Exogenous  ... 175
		Subsequent Developments  ... 176
		QUESTION FOR REVIEW  ... 177
	2.12 Time Regressions  ... 177
		The Asymptotic Distribution of the OLS Estimator  ... 178
		Hypothesis Testing for Time Regressions  ... 180
		QUESTION FOR REVIEW  ... 181
	Appendix 2.A: Asymptotics with Fixed Regressors  ... 181
	Appendix 2.B: Proof of Proposition 2.10  ... 182
	PROBLEM SET FOR CHAPTER 2  ... 185
CHAPTER 3 Single-Equation GMM  ... 203
	ABSTRACT  ... 203
	3.1 Endogeneity Bias: Working\'s Example  ... 204
		A Simultaneous Equations Model of Market Equilibrium  ... 204
		Endogeneity Bias  ... 205
		Observable Supply Shifters  ... 206
		QUESTION FOR REVIEW  ... 209
	3.2 More Examples  ... 210
		A Simple Macroeconometric Model  ... 210
		Errors-in-Variables  ... 211
		Production Function  ... 213
		QUESTION FOR REVIEW  ... 214
	3.3 The General Formulation  ... 215
		Regressors and Instruments  ... 215
		Identification  ... 217
		Order Condition for Identification  ... 219
		The Assumption for Asymptotic Normality  ... 219
		QUESTION FOR REVIEW  ... 220
	3.4 Generalized Method of Moments Defined  ... 221
		Method of Moments  ... 222
		Generalized Method of Moments  ... 223
		Sampling Error  ... 224
		QUESTION FOR REVIEW  ... 224
	3.5 Large-Sample Properties of GMM  ... 225
		Asymptotic Distribution of the GMM Estimator  ... 226
		Estimation of Error Variance  ... 227
		Hypothesis Testing  ... 228
		Estimation of S  ... 229
		Efficient GMM Estimator  ... 229
		Asymptotic Power  ... 231
		Small-Sample Properties  ... 232
		QUESTION FOR REVIEW  ... 232
	3.6 Testing Overidentifying Restrictions  ... 234
		Testing Subsets of Orthogonality Conditions  ... 235
		QUESTION FOR REVIEW  ... 238
	3.7 Hypothesis Testing by the Likelihood-Ratio Principle  ... 239
		The LR Statistic for the Regression Model  ... 240
		Variable Addition Test (optional)  ... 241
		QUESTION FOR REVIEW  ... 242
	3.8 Implications of Conditional Homoskedasticity  ... 242
		Efficient GMM Becomes 2Sl.S  ... 243
		J Becomes Sargan\'s Statistic  ... 244
		Small-Sample Properties of 2SLS  ... 246
		Alternative Derivations of 2SLS  ... 246
		When Regressors Are Predetermined  ... 248
		Testing a Subset of Orthogonality Conditions  ... 249
		Testing Conditional Homoskedasticity  ... 251
		Testing for Serial Correlation  ... 251
		QUESTION FOR REVIEW  ... 252
	3.9 Application: Returns from Schooling  ... 253
		The NLS-Y Data  ... 253
		The Semi-Log Wage Equation  ... 254
		Omitted Variable Bias  ... 255
		IQ as the Measure of Ability  ... 256
		Errors-in-Variables  ... 256
		2SLS to Correct for the Bias  ... 259
		Subsequent Developments  ... 260
		QUESTION FOR REVIEW  ... 260
	PROBLEM SET FOR CHAPTER 3 
		ANALYTICAL EXERCISES  ... 261
		EMPIRICAL EXERCISES  ... 267
CHAPTER 4 Multiple-quation GMM  ... 275
	ABSTRACT  ... 275
	4.1 The Multiple-Equation Model  ... 276
		Linearity  ... 276
		Stationarity and Ergodicity  ... 277
		Orthogonality Conditions  ... 278
		Identification  ... 279
		The Assumption for Asymptotic Normality  ... 281
		Connection to the \"Complete\" System of Simultaneous Equations  ... 282
	4.2 Multiple-Equation GMM Defined  ... 282
	4.3 Large-Sample Theory  ... 285
	4.4 Single-Equation versus Multiple-Equation Estimation  ... 288
		When Are They \"Equivalent\"? 289
		Joint Estimation Can Be Hazardous  ... 290
		QUESTION FOR REVIEW  ... 291
	4.5 Special Cases of Multiple-Equation GMM: FIVE, 3SLS, and SUR  ... 291
		Conditional Homoskedasticity  ... 291
		Full-Information Instrumental Variables Efficient (FIVE)  ... 292
		Three-Stage Least Squares (3SLS)  ... 293
		Seemingly Unrelated Regressions (SUR)  ... 296
		SUR versus OLS  ... 298
		QUESTION FOR REVIEW  ... 300
	4.6 Common Coefficients  ... 303
		The Model with Common Coefficients  ... 303
		The GMM Estimator  ... 304
		Imposing Conditional Homoskedasticity  ... 305
		Pooled OLS  ... 307
		Beautifying the Formulas  ... 309
		The Restriction That Isn\'t  ... 310
		QUESTION FOR REVIEW  ... 311
	4.7 Application: Interrelated Factor Demands  ... 313
		The Translog Cost Function  ... 313
		Factor Shares  ... 314
		Substitution Elasticities  ... 315
		Properties of Cost Functions  ... 316
		Stochastic Specifications  ... 317
		The Nature of Restrictions  ... 318
		Multivariate Regression Subject to Cross-Equation Restrictions  ... 319
		Which Equation to Delete? 321
		Results  ... 322
		QUESTION FOR REVIEW  ... 324
	PROBLEM SET FOR CHAPTER 4  ... 325
		ANALYTICAL EXERCISES  ... 325
		EMPIRICAL EXERCISES  ... 334
CHAPTER 5 Panel Data  ... 340
	ABSTRACT  ... 340
	5.1 The Error-Components Model  ... 341
		Error Components  ... 341
		Group Means  ... 344
		A Reparameterization  ... 344
		QUESTION FOR REVIEW  ... 346
	5.2 The Fixed-Effects Estimator  ... 347
		The Formula  ... 347
		Large-Sample Properties  ... 348
		Digression: When ηi Is Spherical  ... 350
		Random Effects versus Fixed Effects  ... 351
		Relaxing Conditional Homoskedasticity  ... 352
		QUESTION FOR REVIEW  ... 353
	5.3 Unbalanced Panels (optional)  ... 354
		\"Zeroing Out\" Missing Observations  ... 355
		Zeroing Out versus Compression  ... 356
		No Selectivity Bias  ... 357
		QUESTION FOR REVIEW  ... 358
	5.4 Application: International Differences in Growth Rates  ... 359
		Derivation of the Estimation Equation  ... 359
		Appending the Error Term  ... 360
		Treatment of αi  ... 361
		Consistent Estimation of Speed of Convergence  ... 362
		QUESTION FOR REVIEW  ... 363
	Appendix 5.A: Distribution of Hausman Statistic  ... 363
	PROBLEM SET FOR CHAPTER 5  ... 366
		ANALYTICAL EXERCISES  ... 366
		EMPIRICAL EXERCISES  ... 375
CHAPTER 6 Serial Correlation  ... 382
	ABSTRACT  ... 382
	6.1 Modeling Serial Correlation: Linear Processes  ... 382
		MA(q)  ... 383
		MA(∞) as a Mean Square Limit  ... 383
		Filters  ... 386
		Inverting Lag Polynomials  ... 389
		QUESTIONS FOR REVIEW  ... 392
	6.2 ARMA Processes  ... 392
		AR(1) and Its MA(∞) Representation  ... 393
		Autocovariances of AR(1)  ... 395
		AR(p) and Its MA(∞) Representation  ... 395
		ARMA(p, q)  ... 397
		ARMA(p, q) with Common Roots  ... 399
		Invertibility  ... 400
		Autocovariance-Generating Function and the Spectrum  ... 400
		QUESTIONS FOR REVIEW  ... 402
	6.3 Vector Processes  ... 404
		QUESTIONS FOR REVIEW  ... 408
	6.4 Estimating Autoregressions  ... 409
		Estimation of AR(1)  ... 409
		Estimation of AR(p)  ... 410
		Choice of Lag Length  ... 411
		Estimation of VAR$ 414
		Estimation of ARMA(p, q)  ... 415
		QUESTIONS FOR REVIEW  ... 416
	6.5 Asymptotics for Sample Means of Serially Correlated Processes  ... 417
		LLN for Covariance-Stationary Processes  ... 418
		Two Central Limit Theorems  ... 419
		Multivariate Extension  ... 421
		QUESTIONS FOR REVIEW  ... 422
	6.6 Incorporating Serial Correlation in GMM  ... 423
		The Model and Asymptotic Results  ... 423
		Estimating S When Autocovariances Vanish after Finite Lags  ... 424
		Using Kernels to Estimate S  ... 425
		VARHAC  ... 427
		QUESTIONS FOR REVIEW  ... 429
	6.7 Estimation under Conditional Homoskedasticity (Optional)  ... 430
		Kernel-Based Estimation of S under Conditional Homoskedasticity  ... 430
		Data Matrix Representation of Estimated Long-Run Variance  ... 431
		Relation to GLS  ... 432
		QUESTIONS FOR REVIEW  ... 434
	6.8 Application: Forward Exchange Rates as Optimal Predictors  ... 435
		The Market Efficiency Hypothesis  ... 436
		Testing Whether the Unconditional Mean Is Zero  ... 437
		Regression Tests  ... 440
		QUESTIONS FOR REVIEW  ... 444
	PROBLEM SET FOR CHAPTER 6  ... 445
		ANALYTICAL EXERCISES  ... 445
		EMPIRICAL EXERCISES  ... 455
CHAPTER 7 Extremum Estimators  ... 462
	ABSTRACT  ... 462
	7.1 Extremum Estimators  ... 463
		\"Measurability\" of θ 463
		Two Classes of Extremum Estimators  ... 464
		Maximum Likelihood (ML)  ... 465
		Conditional Maximum Likelihood  ... 467
		Invariance of ML  ... 469
		Nonlinear Least Squares (NLS)  ... 470
		Linear and Nonlinear GMM  ... 471
		QUESTIONS FOR REVIEW  ... 472
	7.2 Consistency  ... 473
		Two Consistency Theorems for Extremum Estimators  ... 473
		Consistency of M-Estimators  ... 475
		Concavity after Reparameterization  ... 478
		Identification in NLS and ML  ... 479
		Consistency of GMM  ... 484
		QUESTIONS FOR REVIEW  ... 485
	7.3 Asymptotic Normality  ... 486
		Asymptotic Normality of M-Estimators  ... 487
		Consistent Asymptotic Variance Estimation  ... 490
		Asymptotic Normality of Conditional ML  ... 491
		Two Examples  ... 493
		Asymptotic Normality of GMM  ... 495
		GMM versus ML  ... 498
		Expressing the Sampling Error in a Common Format  ... 500
		Consistency of GMM  ... 503
	7.4 Hypothesis Testing  ... 504
		The Null Hypothesis  ... 504
		The Working Assumptions  ... 506
		The Wald Statistic  ... 506
		The Lagrange Multiplier (LM) Statistic  ... 508
		The Likelihood Ratio (LR) Statistic  ... 510
		Summary of the Trinity  ... 511
		QUESTIONS FOR REVIEW  ... 513
	7.5 Numerical Optimization  ... 514
		Newton-Raphson  ... 514
		Gauss-Newton  ... 515
		Writing Newton-Raphson and Gauss-Newton in a Common Format  ... 515
		Equations Nonlinear in Parameters Only  ... 516
		QUESTIONS FOR REVIEW  ... 517
	PROBLEM SET FOR CHAPTER 7  ... 518
		ANALYTICAL EXERCISES  ... 518
CHAPTER 8 Examples of Maximum Likelihood  ... 524
	ABSTRACT  ... 524
	8.1 Qualitative Response (QR) Models  ... 524
		Score and Hessian for Observation t  ... 525
		Consistency  ... 526
		Asymptotic Normality  ... 527
		QUESTIONS FOR REVIEW  ... 527
	8.2 Truncated Regression Models  ... 528
		The Model  ... 528
		Truncated Distributions  ... 529
		The Likelihood Function  ... 530
		Reparameterizing the Likelihood Function  ... 531
		Verifying Consistency and Asymptotic Normality  ... 532
		Recovering Original Parameters  ... 534
		QUESTIONS FOR REVIEW  ... 534
	8.3 Censored Regression (Tobit) Models  ... 535
		Tobit Likelihood Function  ... 535
		Reparameterization  ... 536
		QUESTIONS FOR REVIEW  ... 538
	8.4 Multivariate Regressions  ... 538
		The Multivariate Regression Model Restated  ... 539
		The Likelihood Function  ... 540
		Maximum the Likelihood Function  ... 541
		Consistency and Asymptotic Normality  ... 542
		QUESTIONS FOR REVIEW  ... 542
	8.5 FIML  ... 543
		The Multiple-Equation Model with Common Instruments Restated  ... 543
		The Complete System of Simultaneous Equations  ... 546
		Relationship between (F0, !10) and &0  ... 547
		The FIML Likelihood Function  ... 548
		The FIML Concentrated Likelihood Function  ... 549
		Testing Overidentifying Restrictions  ... 550
		Properties of the FIML Estimator  ... 550
		ML Estimation of the SUR Model  ... 552
		QUESTIONS FOR REVIEW  ... 554
	8.6 LIML  ... 555
		LIML Defined  ... 555
		Computation of LIML  ... 557
		LIML versus 2SLS  ... 559
		QUESTIONS FOR REVIEW  ... 559
	8.7 Serially Correlated Observations  ... 560
		Two Ouestions  ... 560
		Unconditional ML for Dependent Observations  ... 562
		ML Estimation of AR(1) Processes  ... 563
		Conditional ML Estimation of AR(1) Processes  ... 564
		Conditional ML Estimation of AR(p) and VAR(p) Processes  ... 566
		QUESTIONS FOR REVIEW  ... 567
	PROBLEM SET FOR CHAPTER 8  ... 568
		ANALYTICAL EXERCISES  ... 568
CHAPTER 9 Unit-Root Econometrics  ... 574
	ABSTRACT  ... 574
	9.1 Modeling Trends  ... 574
		Integrated Processes  ... 575
		Why Is It Important to Know if the Process Is I(1)? 577
		Which Should le Taken as the Null, I(0) or I(1)? 579
		Other Approaches to Modeling Trends  ... 580
		QUESTIONS FOR REVIEW  ... 580
	9.2 Tools for Unit-Root Econometrics  ... 580
		Linear I(0) Processes  ... 580
		Approximating I(1) by a Random Walk  ... 581
		Relation to ARMA Models  ... 583
		The Wiener Process  ... 584
		A Useful Lemma  ... 587
		QUESTIONS FOR REVIEW  ... 589
	9.3 Dickey-Fuller Tests  ... 590
		The AR(1) Model  ... 590
		Deriving the Limiting Distribution under the I(1) Null  ... 591
		Incorporating the Intercept  ... 594
		Incorporating Time Trend  ... 598
		QUESTIONS FOR REVIEW  ... 600
	9.4 Augmented Dickey-Fuller Tests  ... 602
		The Augmented Autoregression  ... 602
		Limiting Distribution of the OLS Estimator  ... 603
		Deriving Test Statistics  ... 607
		Testing Hypotheses about ξ 608
		What to Do When p IS Unknown? 609
		A Suggestion for the Choice of p_max(T)  ... 611
		Including the Intercept in the Regression  ... 612
		Incorporating Time Trend  ... 614
		Summary of the DF and ADF Tests and Other Unit-Root Tests  ... 616
		QUESTIONS FOR REVIEW  ... 617
	9.5 Which Unit-Root Test to Use? 618
		Local-to-Unity Asymptotics  ... 619
		Small-Sample Properties  ... 619
	9.6 Application: Purchasing Power Parity  ... 620
		The Embarrassing Resiliency of the Random Walk Model? 621
	PROBLEM SET FOR CHAPTER 9  ... 622
		ANALYTICAL EXERCISES  ... 622
		MONTE CARLO EXERCISES  ... 628
		EMPIRICAL EXERCISES  ... 630
CHAPTER 10 Cointegration  ... 640
	ABSTRACT  ... 640
	10.1 Cointegrated Systems  ... 641
		Linear Vector I(0) and I(1) Processes  ... 641
		The Beveridge-Nelson Decomposition  ... 644
		Cointegration Defined  ... 646
		QUESTIONS FOR REVIEW  ... 649
	10.2 Alternative Representations of Cointegrated Systems  ... 650
		Phillips\'s Triangular Representation  ... 650
		VAR and Cointegration  ... 650
		The Vector Error-Correction Model (VECM)  ... 655
		Johansen\'s ML Procedure  ... 657
		QUESTIONS FOR REVIEW  ... 659
	10.3 Testing the Null of No Cointegration  ... 660
		Spurious Regressions  ... 660
		The Residual-Based Test for Cointegration  ... 661
		Testing the Null of Cointegration  ... 666
		QUESTIONS FOR REVIEW  ... 667
	10.4 Inference on Cointegrating Vectors  ... 667
		The Bivariate Example  ... 669
		Continuing with the Bivariate Example  ... 670
		Allowing for Serial Correlation  ... 671
		General Case  ... 674
		Other Estimators and Finite-Sample Properties  ... 675
		QUESTIONS FOR REVIEW  ... 676
	10.5 Application: The Demand for Money in the United States  ... 676
		The Data  ... 677
		(m - p, y, R) as a Cointegrated System  ... 677
		DOLS  ... 679
		Unstable Money Demand? 680
	PROBLEM SET FOR CHAPTER 10  ... 682
		EMPIRICAL EXERCISES  ... 682




نظرات کاربران