دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: K. Nirmal Ravi Kumar
سری:
ISBN (شابک) : 0367518260, 9780367518264
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 926
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 55 مگابایت
در صورت تبدیل فایل کتاب Econometrics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد سنجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Dedication Table of Contents Foreword Preface Author\'s Note Notations Used Abbreviations 1: Definitions and Scope of Econometrics I. Why Do We Study Econometrics? II. Types of Econometrics III. Data Employed in Econometric Analysis Primary Data and Secondary Data Cross-Sectional Data and Time Series Data Univariate Data, Bivariate Data and Multivariate Data Micro Data and Macro Data IV. Terminology Used in Econometric Analysis V. Methodology of Econometrics Appendix 2: Correlation I. Pearson’s Correlation Coefficient ‘r’ II. Scattergram III. Types of Correlation Positive Correlation, Negative Correlation and Zero Correlation Linear Correlation and Non – Linear Correlation IV. Methods or Formulae to Compute Correlation Coefficient V. Test of Significance of ‘r’ VI. Methods of Studying the Significance of ‘r’ Value VII. Properties of Correlation Coefficient ‘r’ VIII. Numerical Examples for Computation of Correlation Coefficient IX. Coefficient of Determination (r2) Relationship Between r and r2 Limitation of r2 X. Spearman’s Rank Correlation Coefficient ‘rs’ Properties of rs Procedure to Work Out rs Test of Significance of ‘rs’ XI. Partial Correlation Coefficient Appendix 3: Regression I. Methods of Estimating Regression Equations or Derivation of Regression Line Deriving Regression Equation Through Normal Equations Deriving Regression Equation Through Regression Coefficients II. Properties of Regression Coefficient and Relationship Between Correlation and Regression Differences Between Correlation and Regression III. Tests of Significance in Regression Classification of Regression Models 4: Basic Concepts in Simple (Two–Variable) Regression Analysis (SLRM) I. Concept of PRF PRF in Stochastic Form II. Concept of SRF III. OLS Estimation of SLRM IV. OLS Estimator Assumptions of OLS Estimator Features of OLS Method or Estimator Characteristics of the OLS Coefficient Estimates, â and b̂ V. Interpretation of OLS Sample Estimates â and b̂ VI. Measures of Variation Total Variation Explained Variation Unexplained Variation VII. SE Around the Estimated Regression Line (SEyx) VIII. Coefficient of Determination - Test of Goodness of Fit of Regression Line in SLRM Derivation of r2 Interpretation of ‘r2’ Properties of ‘r2’ IX. Mean and Variances of the Sample Estimates in SRF â and b̂ in SRF X. Test of Significance of SLRM XI. Numerical Examples in Simple Linear Regression XII. How the Slope of Regression Equation Changes Due to Changes in the Units of Measurement of Variables XIII. Regression Through Origin (RTO) or Regression Model Without Intercept i.e., Estimation of a Regression Function, Whose Intercept Is Zero XIV. Elasticity vs Slope in an Estimated Regression Equation Appendix 5: Assumptions of the Classical Linear Regression Model (CLRM) I. Assumptions About Independent Variable (x) II. Assumptions Related to Error Term, ‘µ’ III. Other Assumptions Related to Dependent Variable, Y 6: Establishing the Criteria for Judging the Goodness of the Parameter Estimates I. Specification of the Model: Variables that are to be Included in the Model Size (Magnitude) and Signs of the Estimates Formulation of the Econometric Model II. Estimation of the Model by Employing an Appropriate Econometric Method III. Evaluation of the Estimates Economic ‘a Priori’ Criteria or Theoretical Criteria Statistical Criteria or First Order Tests Econometric Criteria or Second Order Tests IV. Forecasting the Findings of Econometric Model 7: Tests of Significance of the Parameter Estimates and Gauss-Markov Theorem I. Means and Variances of OLS Estimates II. Tests of Significance III. Steps in Testing of Hypothesis General Procedure for Statistical Testing of Hypothesis III. Errors in Drawing Conclusions in Research Type I Error, Type II Error IV. Size of Test vs Power of a Test Benefits of Hypothesis Testing V. Gauss-Markov Theorem Small or Finite Sample Properties Unbiasedness Minimum Variance Efficiency Linearity Minimum Mean-Square-Error (MSE) Sufficiency Large Sample or Asymptotic Properties: Consistency Importance of Blue Properties of OLS Estimates Appendix 8: Functional Form Specifications of (Linear) Regression Model I. Linear Regression Model II. Different Functional Forms of Linear Regression Model Semi Log Functional Form Double Log Functional Form or Log-Log (Double-Log) Model Polynomial Functional Form Inverse Functional Form Regression Through Origin (RTO) Model Choice of Functional Form Box-Cox Test for Comparing Different Forms of Linear Regression Models Other Tests for Functional Form Adjusted R2 Test Ramsey’s Regression Specification Error Test (RESET) Test 9: Multiple Linear Regression Model (MLRM) I. Differences Between SLRM and MLRM II. Formulation of MLRM The MLRM Building - Input to a Regression Problem MLRM with Two Independent Variables MLRM with ‘k’ Independent Variables III. Assumptions of MLRM IV. Deriving Normal Equations for MLRM Considering Actual Values of Observations Considering Deviations of Observations of Variables Taken from their Respective Means V. General Procedure to Derive Normal Equations of MLRM for ‘k’ Variables VI. Normal Equations in SLRM and MLRM VII. Interpretation of MLRM Equation Interpretation of the Intercept Interpretation of Partial Regression Coefficients Error Term VIII. Properties of OLS Estimates in MLRM IX. Expressions for the OLS Coefficient Estimates of (Three Variable) MLRM X. Goodness of Fit of MLRM (R2) Derivation of Formula of R2 Generalization of Formula of R2 Properties of R2 XI. Adjusted Coefficient of Multiple Determination ( R̄2 ) Differences Between R2 and R̄2 XII. Tests of Significance of MLRM Test of Significance of Individual Sample Estimate or Individual Partial Regression Coefficient Test for the Overall Significance of MLRM Regression Statistics Table ANOVA Table Regression Coefficients Table Test Hypothesis of Estimated Slope Coefficients (Test of Statistical Significance of Slope Coefficient Estimates) Confidence Intervals for Partial Slope Coefficients Predicted Value of Y from Sample Estimates XIII. The Regression Equation: Standardized Coefficients XIV. Incremental or Marginal Contribution of an Independent Variable XV. Testing the Equality of Two Regression Coefficients XVI. Regression Analysis Under Linear Restrictions and Preliminary Test Estimation XVII. Relationship Between SLRM and MLRM XVIII.Different Methods of Entering Independent Variables in the MLRM Forced Entry Method Hierarchical Method Step-Wise Method Forward Selection Backward Elimination or Deletion XIX. Extension of MLRM to Non-Linear Relationships XX. Regression and Analysis of Variance (ANOVA) ANOVA as a Statistical Method to Study Variation Regression Analysis Comparison of ANOVA and Regression Analysis XXI. Multiple Regression - Specification Bias Omission of Right Independent Variable from the Model Inclusion of Irrelevant Independent Variable into the Model XXII. MLRM with Interaction Among Independent Variables Appendix 10: Relaxing the Assumptions of CLRM 11: Multicollinearity I. Why Is Multicollinearity a Problem? II. Types of Multicollinearity: Exact or Perfect Multicollinearity Near or Less Than Perfect or Imperfect Multicollinearity III. Sources of Multicollinearity IV. Examples for Multicollinearity V. Consequences of Multicollinearity Theoretical Consequences Practical Consequences VI. Detecting Multicollinearity Tests for Detecting Multicollinearity Problem in MLRM Frisch’s Confluence Analysis or Bunch Map Analysis The Farrar - Glauber Test for Multicollinearity Solutions for the Incidence of Multicollinearity 12: Hetroscedasticity I. Forms of Heteroscedasticity Pure Heteroscedasticity Impure Heteroscedasticity II. Reasons for the Presence of Heteroscedasticity III. Interpretation and Graphical Representation of Homoscedasticity and Heteroscedasticity IV. Consequences of the Violation of the Assumption of Homoscedasticity V. Differences Between OLS and GLS Methods Case 1 -Transforming the Variables and Applying OLS Case 2 - Application of GLS Method Deriving the GLS Estimates for a General Linear Regression Model with Heteroscedasticity WLS Estimator Problems with Using the GLS Estimator Feasible Generalized Least Squares (FGLS) Estimator VI. Tests for Detection of Heteroscedasticity Problem Informal Methods Nature of the Problem Graphical Method (Residual Plot Method) Formal Methods Park Test Glejser Test Spearman Rank Correlation Test Goldfeld and Quandt Test Koenker–Bassett (KB) Test Breusch-pagan-godfrey (BPG) Test White Test VII. Solutions for Heteroscedasticity Problem Transforming the Heteroscedastic Model When σ2iμ is Specified or Known Use of Robust SEs - Robust Inference After OLS Change the Functional Form of Regression Model Drop Outliers VII. Testing for Heteroscedasticity in Time Series Data 13: Autocorrelation I. FOARS or First Order Markov Process II. Second Order Autoregressive Scheme (SOARS) III. Calculation of ‘ρ’ in Case of FOARS for Population Data IV. Calculation of ‘ρ’ in Case of FOARS for Sample Data V. Autocorrelation vis-à-vis Serial Correlation Spatial Autocorrelation True or Pure Autocorrelation False or Impure Autocorrelation VI. Sources of Autocorrelation VII. Estimation of Error Term (μt) in the Presence of Autocorrelation (FOARS) VIII. Mean, Variance and Covariance of Autocorrelated Error Terms IX. Consequences of Autocorrelation or Consequences of Using OLS in the Presence of Autocorrelation X. Detection of Autocorrelation or Tests for Autocorrelation Graphical Method Qualitative Approach Plot Residuals and Lagged Values in a 4-Quadrant Diagram Plot Residuals Across Time Plot Standardized Residuals Across Time Quantitative Approach or Formal Tests The Runs Test Durbin-Watson ‘d’ Test The Durbin’s ‘h’ Test Berenblut-Webb’s ‘g’ Test Theil Nagar’s Modified ‘d’ Statistic An Alternative Test for Autocorrelation An Asymptotic or Large Sample Test Breusch-Godfrey (BG) Test of High-Order Autocorrelation Ljung-box ‘Q’ Test XI. Model Mis-Specification Versus Pure Autocorrelation XII. Remedial Measures of Autocorrelation Generalized Least Squares (GLS) Procedure Rationalization of the Transformation Procedure A Priori Information About ‘ρ’ Estimation of ‘ρ’ from Durbin-Watson’s ‘d’ Statistic Iterative Procedures The Cochrane-Orcutt Iterative Procedure Durbin’s Two-Step Method of ‘ρ’ Estimation Hildreth-Lu (HILU) Search Procedure Newey-West SEs XIII. Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Models Appendix 14: Regression on Dummy Variables I. ANOVA Model Regression by Employing a Single Dummy Variable Regression by Employing Two Dummy Variables II. ANOVA Model Regression by Employing One Quantitative Independent Variable and One Dummy Variable (with Two Classes) Regression by Employing One Quantitative Independent Variable and Two Dummy Variables (with Two Classes Each) III. Interaction Effects Using Dummy Variables Interaction Between Quantitative Independent Variable and Qualitative Independent (Dummy) Variable Interaction Between Two Qualitative Independent (Dummy) Variables IV. Caution in the Use of Dummy Variables V. Testing for Structural Stability of Regression Models - Chow Test VI. Testing for Structural Stability of Regression Models by Employing Dummy Variables – Use of Dummy Variable Technique Alternative to Chow Test VII. Use of Dummy Variables in Seasonal Analysis References