دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بوم شناسی ویرایش: نویسندگان: Hugo Fort سری: ISBN (شابک) : 0750324309, 9780750324304 ناشر: Iop Publishing سال نشر: 2020 تعداد صفحات: 299 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Ecological Modelling and Ecophysics: Agricultural and environmental applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی اکولوژیکی و اکوفیزیک: کاربردهای کشاورزی و محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PRELIMS.pdf Preface References Acknowledgements Author biography Hugo Fort CH000.pdf Chapter 0 Introduction 0.1 The goal of ecology: understanding the distribution and abundance of organisms from their interactions 0.2 Mathematical models 0.2.1 What is modelling? 0.2.2 Why mathematical modelling? 0.2.3 What kind of mathematical modelling? 0.2.4 Principles and some rules of mathematical modelling 0.3 Community and population ecology modelling 0.3.1 Parallelism with physics and the debate of the ‘biology-as-physics approach’ 0.3.2 Trade-offs and modelling strategies References CH001.pdf Chapter 1 From growth equations for a single species to Lotka–Volterra equations for two interacting species Summary 1.1 From the Malthus to the logistic equation of growth for a single species 1.1.1 Exponential growth 1.1.2 Resource limitation, density dependent per-capita growth rate and logistic growth 1.2 General models for single species populations and analysis of local equilibrium stability 1.2.1 General model and Taylor expansion 1.2.2 Algebraic and geometric analysis of local equilibrium stability 1.3 The Lotka–Volterra predator–prey equations 1.3.1 A general dynamical system for predator–prey 1.3.2 A first model for predator–prey: the original Lotka–Volterra predator–prey model 1.3.3 Realistic predator–prey models: logistic growth of prey and Holling predator functional responses 1.4 The Lotka–Volterra competition equations for a pair of species 1.4.1 A descriptive or phenomenological model 1.4.2 Stable equilibrium: competitive exclusion or species coexistence? 1.4.3 Transforming the competition model into a mechanistic model 1.5 The Lotka–Volterra equations for two mutualist species Exercises Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7 Exercise 1.8 Exercise 1.9 Exercise 1.10 Exercise 1.11 Exercise 1.12 Exercise 1.13 Exercise 1.14 Exercise 1.15 References CH00A1.pdf Chapter A1 Extensive livestock farming: a quantitative management model in terms of a predator–prey dynamical system A1.1 Background information: the growing demand for quantitative livestock models A1.2 A predator–prey model for grassland livestock or PPGL A1.2.1 What is our goal? A1.2.2 What do we know? and what do we assume?: identifying measurable relevant variables for grass and animals A1.2.3 How? Adapting a predator–prey model A1.2.4 What will our model predict? A1.3 Model validation A1.3.1 Are predictions valid? A1.3.2 Sensitivity analysis A1.3.3 Verdict: model validated A1.4 Uses of PPGL by farmers: estimating gross margins in different productive scenarios A1.5 How can we improve our model? MATLAB codes Main code: LVPPGL_Ap1% Function ‘Digest’ References CH002.pdf Chapter 2 Lotka–Volterra models for multispecies communities and their usefulness as quantitative predicting tools Summary 2.1 Many interacting species: the Lotka–Volterra generalized linear model 2.2 The Lotka–Volterra linear model for single trophic communities 2.2.1 Purely competitive communities 2.2.2 Single trophic communities with interspecific interactions of different signs 2.2.3 Obtaining the parameters of the linear Lotka–Volterra generalized model from monoculture and biculture experiments 2.3 Food webs and trophic chains 2.4 Quantifying the accuracy of the linear model for predicting species yields in single trophic communities11This section is based on Fort (2018a). 2.4.1 Obtaining the theoretical yields: linear algebra solutions and simulations 2.4.2 Accuracy metrics to quantitatively evaluate the performance of the LLVGE 2.4.3 The linear Lotka–Volterra generalized equations can accurately predict species yields in many cases 2.4.4 Often a correction of measured parameters, within their experimental error bars, can greatly improve accuracy 2.5 Working with imperfect information 2.5.1 The ‘Mean Field Matrix’ (MFM) approximation for predicting global or aggregate quantities 2.5.2 The ‘focal species’ approximation for predicting the performance of a given species when our knowledge on the set of parameters is incomplete 2.6 Conclusion Exercises Exercise 2.1. Redoing calculations for the experiment involving four species of winter annuals plants of Rees et al (1996) Exercise 2.2. Exercise 2.3 (from Goh 1977) Exercise 2.4. A Lyapunov function for the Lotka–Volterra competition equations with symmetric interaction coefficients Exercise 2.5. The reference point for the modified index of agreement d1 Exercise 2.6. Working with relative yields rather than yields Exercise 2.7. Using the mean field approximation for predicting the RYT of a BIODEPTH 32 plant species experiment Exercise 2.8. An example of application of the focal approximation References CH00A2.pdf Chapter A2 Predicting optimal mixtures of perennial crops by combining modelling and experiments A2.1 Background information A2.2 Overview A2.3 Experimental design and data A2.4 Modelling A2.4.1 Model equations A2.4.2 Data curation A2.4.3 Initial parameter estimation from experimental data A2.4.4 Adjustment of the initial estimated parameters to meet stability conditions A2.4.5 On the types of interspecific interactions A2.5 Metrics for overyielding and equitability A2.6 Model validation: theoretical versus experimental quantities A2.6.1 Qualitative check: species ranking A2.6.2 Quantitative check I: individual species yields A2.6.3 Quantitative check II: overyielding, total biomasses and equitability A2.6.4 Verdict: model validated A2.7 Predictions: results from simulation of not sown treatments A2.7.1 Similarities and differences between theoretical results for sown and not sown polycultures A2.7.2 Using the model for predicting optimal mixtures A2.8 Using the model attempting to elucidate the relationship between yield and diversity A2.8.1 Positive correlation between productivity and species richness. A2.8.2 No significant correlation between productivity and SE A2.9 Possible extensions and some caveats A2.10 Bottom line MATLAB code References CH003.pdf Chapter 3 The maximum entropy method and the statistical mechanics of populations Summary 3.1 Basics of statistical physics 3.1.1 The program of statistical physics 3.1.2 Boltzmann–Gibbs maximum entropy approach to statistical mechanics 3.2 MaxEnt in terms of Shannon’s information theory as a general inference approach 3.2.1 Shannon’s information entropy 3.2.2 MaxEnt as a method of making predictions from limited data by assuming maximal ignorance 3.2.3 Inference of model parameters from the statistical moments via MaxEnt 3.3 The statistical mechanics of populations 3.3.1 Rationale and first attempts 3.3.2 Harte’s MaxEnt theory of ecology (METE)33This subsection devoted to METE is based on chapter 7 of Harte’s Maximum entropy and ecology (2011). 3.4 Neutral theories of ecology 3.5 Conclusion Exercises Exercise 3.1. An alternative way to obtain that the Lagrange multiplier of the Boltzmann distribution is λ1=1/kBT. Exercise 3.2. Exercise 3.3. Exercise 3.4. Exercise 3.5. Exercise 3.6. A toy community Exercise 3.7. Exercise 3.8. Exercise 3.9. Exercise 3.10. Exercise 3.11. Exercise 3.12. References CH00A3.pdf Chapter A3 Combining the generalized Lotka–Volterra model and MaxEnt method to predict changes of tree species composition in tropical forests A3.1 Background information A3.2 Overview A3.3 Data for Barro Colorado Island (BCI) 50 ha tropical Forest Dynamics Plot A3.3.1 Some facts about BCI A3.3.2 Covariance matrices and species interactions A3.4 Modelling A3.4.1 Inference of the effective interaction matrix from the covariance matrix via MaxEnt A3.4.2 Model equations A3.5 Model validation using time series forecasting analysis A3.5.1 Estimation of intrinsic growth rates and carrying capacities using a training set of data A3.5.2 Generating predictions to be contrasted against a validation set of data A3.5.3 Verdict: model validated A3.6 Predictions A3.7 Extensions, improvements and caveats A3.8 Conclusion MATLAB code References CH004.pdf Chapter 4 Catastrophic shifts in ecology, early warnings and the phenomenology of phase transitions Summary 4.1 Catastrophes 4.1.1 Catastrophic shifts and bifurcations 4.1.2 A simple population (mean field) model with a catastrophe 4.2 When does a catastrophic shift take place? Maxwell versus delay conventions 4.3 Early warnings of catastrophic shifts22This section is mostly a summary of the material presented in chapter 9 of Gilmore (1981). 4.4 Beyond the mean field approximation 4.4.1 Spatial model: cellular automaton 4.4.2 Early warning signals 4.5 A comparison with the phenomenology of the liquid–vapor phase transition 4.5.1 Beyond the ideal gas: the van der Waals equation of state for a fluid and its formal correspondence with the grazing model 4.5.2 Similarities and differences between desertification and the liquid–vapor transition 4.6 Final comments Exercises Exercise 4.1. Spruce budworm model Exercise 4.2. The ‘fold curve’ of the Spruce budworm model in the control parameter space c–K Exercise 4.3. A simple model with a fold bifurcation Exercise 4.4. Exercise 4.5. Critical slowing down Exercise 4.6. Anomalous variance Exercise 4.7. Simulating an environmental shift Exercise 4.8. References CH00A4.pdf Chapter A4 Modelling eutrophication, early warnings and remedial actions in a lake A4.1 Background information A4.2 Overview A4.3 Data for Lake Mendota A4.4 Modelling1 A4.4.1 The Mendota Lake cellular automaton A4.4.2 Catastrophic shifts in lakes and their spatial early warnings A4.5 Model validation A4.5.1 Simulations and results A4.5.2 Verdict: model validated, but… A4.6 Usefulness of the early warnings A4.7 Extensions, improvements and caveats FORTRAN 77 code References APP1.pdf Chapter A.1 Local and global stability A.2 Stability for two-dimensional systems A.3 Some general theorems1 References APP2.pdf Chapter Additional Fermi problems References