دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Pankaj Agarwal
سری:
ISBN (شابک) : 9788120328921, 8120328922
ناشر: Prentice-Hall of India Pvt.Ltd
سال نشر: 2006
تعداد صفحات: 660
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Earthquake Resistant Design of Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی سازه های مقاوم در برابر زلزله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title\nEarthquake Resistant Design of Structures\nCopyright\nDedication\nContents\nPreface\nContributors\n1. Engineering Seismology\n 1.1 Introduction\n 1.2 Reid’s Elastic Rebound Theory\n 1.3 Theory of Plate Tectonics\n 1.3.1 Lithospheric Plates\n 1.3.2 Plate Margins and Earthquake Occurrences\n 1.3.3 The Movement of Indian Plate\n 1.4 Seismic Waves\n 1.4.1 Body Waves\n 1.4.2 Surface Waves\n 1.5 Earthquake Size\n 1.5.1 Intensity\n 1.5.2 Isoseismal Map\n 1.5.3 Earthquake Magnitude\n 1.5.4 Energy Released in an Earthquake\n 1.5.5 Earthquake Frequency\n 1.6 Local Site Effects\n 1.6.1 Basin/Soil Effects\n 1.6.2 Lateral Discontinuity Effects\n 1.6.3 Effect of the Surface Topography\n 1.7 Internal Structure of the Earth\n 1.7.1 Crust\n 1.7.2 Upper Mantle\n 1.7.3 Lower Mantle\n 1.7.4 Core\n 1.8 Seismotectonics of India\n 1.9 Seismicity of India\n 1.10 Classification of Earthquakes\n 1.11 Tsunami\n 1.11.1 Tsunami Velocity\n 1.11.2 Run-up and Inundation\n Summary\n Glossary of Earthquake/Seismology\n References\n2. Seismic Zoning Map of India\n 2.1 Introduction\n 2.2 Seismic Hazard Map\n 2.3 Seismic Zone Map of 1962\n 2.4 Seismic Zone Map of 1966\n 2.4.1 Grade Enhancement\n 2.4.2 Review of Tectonic\n 2.5 Seismic Zone Map of 1970\n 2.6 Seismic Zone Map of 2002\n 2.7 Epilogue\n Summary\n References\n3. Strong Motion Studies in India\n 3.1 Introduction\n 3.2 Understanding the Nature of Ground Motions\n 3.2.1 Source Effect\n 3.2.2 Path Effect\n 3.2.3 Site Effect\n 3.3 Estimation of Ground Motion Parameters\n 3.4 The Indian Perspective\n 3.5 Utilization of Strong Motion Data\n Summary\n References\n4. Strong Motion Characteristics\n 4.1 Introduction\n 4.2 Terminology of Strong Motion Seismology\n 4.2.1 Amplitude Parameters\n 4.2.2 Duration of Strong Motion\n 4.2.3 Fourier Spectrum\n 4.2.4 Power Spectrum\n 4.2.5 Response Spectrum\n 4.2.6 Seismic Demand Diagrams\n 4.2.7 Spatial Variation of Earthquake Ground Motion\n 4.2.8 Damage Potential of Earthquakes\n Summary\n References\n5. Evaluation of Seismic Design Parameters\n 5.1 Introduction\n 5.2 Types of Earthquakes\n 5.2.1 Intensity\n 5.2.2 Magnitude\n 5.3 Fault Rupture Parameters\n 5.4 Earthquake Ground Motion Characteristics\n 5.4.1 Amplitude Properties\n 5.4.2 Duration\n 5.4.3 Effect of Distance\n 5.4.4 Ground Motion Level\n 5.4.5 Geographical, Geophysics and Geotechnical Data\n 5.5 Deterministic Approach\n 5.6 Probabilistic Approach\n 5.6.1 Example\n 5.7 Response Spectra\n 5.8 Design Spectrum\n Summary\n References\n6. Initiation into Structural Dynamics\n 6.1 Introduction\n 6.2 Mathematical Modelling\n Summary\n References\n7. Dynamics of Single Degree of Freedom Systems\n 7.1 Introduction\n 7.2 Free Vibration of Viscous-Damped SDOF Systems\n 7.2.1 Underdamped Case (z < 1\n 7.2.2 Critically-damped Case (z = 1\n 7.2.3 Overdamped Case (z > 1\n 7.3 Forced Vibrations of SDOF Systems\n 7.3.1 Response of SDOF Systems to Harmonic Excitations\n 7.3.2 Excitation by Base Motion\n 7.3.3 Response of SDOF Systems to a Finite Duration Excitation\n 7.3.4 Response of SDOF Systems to a Short Duration Impulse\n 7.3.5 Response of SDOF Systems to General Dynamic Excitation\n 7.4 Vibration Isolation\n Summary\n References\n8. Theory of Seismic Pickups\n 8.1 Introduction\n 8.2 The Physics of Operation\n 8.3 Which Parameter to Measure\n 8.4 Seismometers\n 8.4.1 Displacement Pickups\n 8.4.2 Velocity Pickups\n 8.5 Accelerometers\n 8.5.1 Servo-accelerometers\n 8.5.2 Calibration of Accelerometers\n Summary\n References\n9. Numerical Evaluation of Dynamic Response\n 9.1 Numerical Solution Based on Interpolation of Excitation\n 9.2 Numerical Solution Based on Approximation of Derivatives\n 9.3 Stability and Accuracy Considerations\n Summary\n References\n10. Response Spectra\n 10.1 Introduction\n 10.2 Fourier Spectra\n 10.3 Response Spectra\n 10.3.1 Formulation\n 10.3.2 Solution: Initially at Rest\n 10.3.3 Solution: General Conditions\n 10.3.4 Smooth Spectrum\n 10.3.5 Seismic Demand Diagrams\n Summary\n References\n11. Dynamics of Multi-Degree-of-Freedom Systems\n 11.1 Introduction\n 11.2 System Property Matrices\n 11.3 Dynamics of Two Degree of Freedom Systems\n 11.4 Free Vibration Analysis of MDOF Systems\n 11.4.1 Orthogonality Conditions\n 11.5 Determination of Fundamental Frequency\n 11.5.1 Rayleigh Quotient\n 11.5.2 Stodola Method\n 11.5.3 Converging to Higher Modes\n 11.6 Forced Vibration Analysis\n 11.6.1 Mode-superposition Method\n 11.6.2 Excitation by Support Motion\n 11.6.3 Mode Truncation\n 11.6.4 Static Correction for Higher Mode Response\n 11.7 Model Order Reduction in Structural Dynamics\n 11.8 Analysis for Multi-Support Excitation\n 11.9 Soil–Structure Interaction Effects\n 11.9.1 Dynamic Analysis including SSI Effects\n Summary\n References\n12. Earthquake and Vibration Effect on Structures:\r Basic Elements of Earthquake Resistant Design\n 12.1 Introduction\n 12.2 Static and Dynamic Equilibrium\n 12.3 Structural Modelling\n 12.3.1 Structural Models for Frame Building\n 12.4 Seismic Methods of Analysis\n 12.4.1 Code-based Procedure for Seismic Analysis\n 12.5 Seismic Design Methods\n 12.5.1 Code-based Methods for Seismic Design\n 12.6 Response Control Concepts\n 12.6.1 Earthquake Protective Systems\n 12.7 Seismic Evaluation and Retrofitting\n 12.7.1 Methods for Seismic Evaluation\n 12.7.2 Methods for Seismic Retrofitting\n 12.8 Seismic Test Methods\n 12.8.1 Methods for Seismic Testing\n Summary\n References\n13. Identification of Seismic Damages in RC Buildings\r during Bhuj Earthquake\n 13.1 Introduction\n 13.2 Reinforced Concrete Building Construction Practices\n 13.3 Identification of Damage in RC Buildings\n 13.3.1 Soft Storey Failure\n 13.3.2 Floating Columns\n 13.3.3 Plan and Mass Irregularity\n 13.3.4 Poor Quality of Construction Material and Corrosion of Reinforcement\n 13.3.5 Pounding of Buildings\n 13.3.6 Inconsistent Seismic Performance of Buildings\n 13.4 Damage to Structural Elements\n 13.5 Damage to Non-Structural Panel Elements\n 13.5.1 Damage to Infill Walls\n 13.5.2 Damage to Exterior Walls\n 13.6 Damage to Water Tank and Parapets\n 13.7 Damage to Vertical Circulation Systems\n 13.7.1 Damage to Staircase\n 13.7.2 Damage to Elevator\n 13.8 Effect of Earthquake on Code Designed Structures\n 13.9 Lessons Learnt from Damages of RC Buildings\n Summary\n References\n14. Effect of Structural Irregularities on the Performance\r of RC Buildings during Earthquakes\n 14.1 Introduction\n 14.2 Vertical Irregularities\n 14.2.1 Vertical Discontinuities in Load Path\n 14.2.2 Irregularity in Strength and Stiffness\n 14.2.3 Mass Irregularities\n 14.2.4 Vertical Geometric Irregularity\n 14.2.5 Proximity of Adjacent Buildings\n 14.3 Plan Configuration Problems\n 14.3.1 Torsion Irregularities\n 14.3.2 Re-entrant Corners\n 14.3.3 Non-parallel Systems\n 14.3.4 Diaphragm Discontinuity\n 14.4 Recommendations\n Summary\n References\n15. Seismoresistant Building Architecture\n 15.1 Introduction\n 15.2 Lateral Load Resisting Systems\n 15.2.1 Moment Resisting Frame\n 15.2.2 Building with Shear Wall or Bearing Wall System\n 15.2.3 Building with Dual System\n 15.3 Building Configuration\n 15.3.1 Problems and Solutions\n 15.4 Building Characteristics\n 15.4.1 Mode Shapes and Fundamental Period\n 15.4.2 Building Frequency and Ground Period\n 15.4.3 Damping\n 15.4.4 Ductility\n 15.4.5 Seismic Weight\n 15.4.6 Hyperstaticity/Redundancy\n 15.4.7 Non-structural Elements\n 15.4.8 Foundation Soil/Liquefaction\n 15.4.9 Foundations\n 15.5 Quality of Construction and Materials\n 15.5.1 Quality of Concrete\n 15.5.2 Construction Joints\n 15.5.3 General Detailing Requirements\n Summary\n References\n16. Code Based Procedure for Determination of Design\r Lateral Loads\n 16.1 Introduction\n 16.2 Seismic Design Philosophy\n 16.3 Determination of Design Lateral Forces\n 16.3.1 Equivalent Lateral Force Procedure\n 16.3.2 Dynamic Analysis Procedure\n Summary\n References\n17. Consideration of Infill Wall in Seismic Analysis of\r RC Buildings\n 17.1 Introduction\n 17.2 Structural and Constructional Aspects of Infills\n 17.3 Failure Mechanism of Infilled Frame\n 17.4 Analysis of Infilled Frames\n 17.4.1 Equivalent Diagonal Strut\n Summary\n References\n18. Step-by-Step Procedure for Seismic Analysis of a Fourstoreyed\r RC Building as per IS 1893 (Part 1): 2002\n 18.1 Introduction\n 18.2 Equivalent Static Lateral Force Method\n 18.2.1 Step 1: Calculation of Lumped Masses to Various Floor Levels\n 18.2.2 Step 2: Determination of Fundamental Natural Period\n 18.2.3 Step 3: Determination of Design Base Shear\n 18.2.4 Step 4: Vertical Distribution of Base Shear\n 18.3 Response Spectrum Method\n A: Frame without Considering the Stiffness of Infills\n 18.3.1 Step 1: Determination of Eigenvalues and Eigenvectors\n 18.3.2 Step 2: Determination of Modal Participation Factors\n 18.3.3 Step 3: Determination of Modal Mass\n 18.3.4 Step 4: Determination of Lateral Force at Each Floor in Each Mode\n 18.3.5 Step 5: Determination of Storey Shear Forces in Each Mode\n 18.3.6 Step 6: Determination of Storey Shear Force due to All Modes\n 18.3.7 Step 7: Determination of Lateral Forces at Each Storey\n B: Frame Considering the Stiffness of Infills\n 18.4 Time History Method\n 18.4.1 Step 1: Calculation of Modal Matrix\n 18.4.2 Step 2: Calculation of Effective Force Vector\n 18.4.3 Step 3: Calculation of Displacement Response in Normal Coordinate\n 18.4.4 Step 4: Displacement Response in Physical Coordinates\n 18.4.5 Step 5: Calculation of Effective Earthquake Response Forces at\r Each Storey\n 18.4.6 Step 6: Calculation of Storey Shear\n 18.4.7 Step 7: Calculation of Maximum Response\n Summary\n References\n Appendix 1: Linear Interpolation of Excitation\n19. Mathematical Modelling of Multi-storeyed\r RC Buildings\n 19.1 Introduction\n 19.2 Planar Models\n 19.2.1 Shear Beam Model\n 19.2.2 Flexure Beam Model\n 19.2.3 Idealized Plane Frame Model\n 19.2.4 Equivalent Shear Wall Frame Model\n 19.2.5 Plane Frame Model of Coupled Shear Walls\n 19.3 3D Space Frame Model\n 19.4 Reduced 3D Model\n 19.5 Some Important Issues in Modelling\n 19.5.1 Modelling of Floor Diaphragms\n 19.5.2 Modelling of Soil-Foundation\n 19.5.3 Foundation Models\n 19.5.4 Soil Models\n 19.5.5 Modelling of Staircases\n 19.5.6 Modelling of Infills\n Summary\n References\n20. Ductility Considerations in Earthquake Resistant\r Design of RC Buildings\n 20.1 Introduction\n 20.2 Impact of Ductility\n 20.3 Requirements for Ductility\n 20.4 Assessment of Ductility\n 20.4.1 Member/Element Ductility\n 20.4.2 Structural Ductility\n 20.5 Factors Affecting Ductility\n 20.6 Ductility Factors\n 20.7 Ductile Detailing Considerations as per IS 13920: 1993\n Summary\n References\n21. Earthquake Resistant Design of a Four-storey\r RC Building Based on IS 13920: 1993\n 21.1 Introduction\n 21.2 Preliminary Data for Example Frame\n 21.3 Loading Data\n 21.4 Analysis of Sub-frame 4-4\n 21.4.1 Dead Load Analysis\n 21.4.2 Live (Imposed) Load Analysis\n 21.4.3 Earthquake Load Analysis\n 21.5 Load Combinations\n 21.6 Design of Sub-Frame 4-4\n 21.6.1 Design of a Flexure Member\n 21.6.2 Design of Exterior Columns\n 21.6.3 Design of Interior Columns\n 21.6.4 Detailing of Reinforcements\n Summary\n References\n22. Earthquake Resistant Design of Shear Wall as per\r IS 13920: 1993\n 22.1 Introduction\n 22.2 Description of Building\n 22.3 Determination of Design Lateral Forces\n 22.4 Design of Shear Wall\n 22.5 Detailing of Reinforcements\n Summary\n References\n23. Capacity Based Design—An Approach for Earthquake\r Resistant Design of Soft Storey RC Buildings\n 23.1 Introduction\n 23.2 Preliminary Data for (G+3) Plane Frame\n 23.2.1 Determination of Loads\n 23.3 Step-by-Step Procedure for Capacity Based Design\n 23.3.1 Step 1: Seismic Analysis of Frame (G+3\n 23.3.2 Step 2: Determination of Flexural Capacity of Beams\n 23.3.3 Step 3: Establishing a Strong Column–Weak Beam Mechanism\n 23.3.4 Step 4: Determination of Moment Magnification Factors for Columns\n 23.3.5 Step 5: Capacity Design for Shear in Beams\n 23.3.6 Step 6: Capacity Design for Shear in Columns\n 23.3.7 Step 7: Detailing of Reinforcements\n Summary\n References\n Appendix 1: Beam Flexural Capacity Calculation as per Design Aid IS456: 1978\n Appendix 2: Determination of Moment Magnification Factor at Every Joint\n24. Identification of Damages and Non-Damages in\r Masonry Buildings from Past Indian Earthquakes\n 24.1 Introduction\n 24.2 Past Indian Earthquakes\n 24.3 Features of Damages and Non-damages\n 24.3.1 Bhuj Earthquake, January 26, 2001\n 24.3.2 Chamoli Earthquake, March 29, 1999\n 24.3.3 Jabalpur Earthquake, May 22, 1997\n 24.3.4 Killari Earthquake, September 30, 1993\n 24.3.5 Uttarkashi Earthquake, October 20, 1991\n 24.3.6 Bihar-Nepal Earthquake, August 21, 1988\n 24.4 Lessons Learnt\n 24.5 Recommendations\n Summary\n References\nAppendix 1: Muzaffarabad Earthquake of October 8, 2005\n25. Elastic Properties of Structural Masonry\n 25.1 Introduction\n 25.2 Materials for Masonry Construction\n 25.2.1 Unit\n 25.2.2 Mortar\n 25.2.3 Grout\n 25.2.4 Reinforcement\n 25.3 Elastic Properties of Masonry Assemblage\n 25.3.1 Compressive Strength\n 25.3.2 Flexural Tensile Strength\n 25.3.3 Shear Strength\n Summary\n References\n26. Lateral Load Analysis of Masonry Buildings\n 26.1 Introduction\n 26.2 Procedure for Lateral Load Analysis of Masonry Buildings\n 26.2.1 Step 1: Determination of Lateral Loads\n 26.2.2 Step 2: Distribution of Lateral Forces\n 26.2.3 Step 3: Determination of Rigidity of Shear Wall\n 26.2.4 Step 4: Determination of Direct Shear Forces and Torsional\r Shear Forces\n 26.2.5 Step 5: Determination of Increase in Axial Load Due to Overturning\n 26.2.6 Step 6: Walls Subjected to Out-of-plane Bending\n Summary\n References\n27. Seismic Analysis and Design of Two-storeyed\r Masonry Buildings\n 27.1 Introduction\n 27.2 Building Data\n 27.3 Step 1: Determination of Design Lateral Load\n 27.4 Step 2: Determination of Wall Rigidities\n 27.5 Step 3: Determination of Torsional Forces\n 27.6 Step 4: Determination Increase in Axial Load due to Overturning\n 27.7 Step 5: Determination of Pier Loads, Moments and Shear\n 27.8 Step 6: Design of Shear Walls for Axial Load and Moments\n 27.9 Step 7: Design of Shear Walls for Shear\n 27.10 Step 8: Structural Details\n Summary\n References\n28. Seismic Evaluation of Reinforced Concrete Buildings:\r A Practical Approach\n 28.1 Introduction\n 28.2 Components of Seismic Evaluation Methodology\n 28.2.1 Condition Assessment for Evaluation\n 28.2.2 Field Evaluation/Visual Inspection Method\n 28.2.3 Concrete Distress and Deterioration Other than Earthquake\n 28.2.4 Non-destructive Testing (NDT\n Summary\n References\n29. Seismic Retrofitting Strategies of Reinforced\r Concrete Buildings\n 29.1 Introduction\n 29.2 Consideration in Retrofitting of Structures\n 29.3 Source of Weakness in RC Frame Building\n 29.3.1 Structural Damage due to Discontinuous Load Path\n 29.3.2 Structural Damage due to Lack of Deformation\n 29.3.3 Quality of Workmanship and Materials\n 29.4 Classification of Retrofitting Techniques\n 29.5 Retrofitting Strategies for RC Buildings\n 29.5.1 Structural Level (or Global) Retrofit Methods\n 29.5.2 Member Level (or Local) Retrofit Methods\n 29.6 Comparative Analysis of Methods of Retrofitting\n Summary\n References\n30. Seismic Retrofitting of Reinforced Concrete\r Buildings—Case Studies\n 30.1 Introduction\n 30.2 Methodology for Seismic Retrofitting of RC Buildings\n 30.3 Case Study 1: Seismic Retrofitting of RC Building with Jacketing and\r Shear Walls\n 30.4 Case Study 2: Seismic Retrofitting of RC Building with Bracing and\r Shear Wall\n 30.5 Case Study 3: Seismic Retrofitting of RC Building with Steel Bracing\n 30.6 Case Study 4: Seismic Retrofitting of RC Building by Jacketing of Frames\n 30.7 Case Study 5: Seismic Retrofitting of RC Building with Shear Walls and\r Jacketing\n 30.8 Case Study 6: Seismic Retrofitting of RC Building by Adding Frames\n 30.9 Case Study 7: Seismic Retrofitting of RC Building by Steel Bracing and\r Infill Walls\n 30.10 Case Study 8: Seismic Retrofitting of RC Building with Shear Walls\n 30.11 Case Study 9: Seismic Retrofitting of RC Building by Seismic Base Isolation\n 30.12 Case Study 10: Seismic Retrofitting of RC Building by Viscous Damper\n Summary\n References\n31. Seismic Provisions for Improving the Performance of\r Non-engineered Masonry Construction with\r Experimental Verifications\n 31.1 Introduction\n 31.2 Criteria for Earthquake Resistant Provisions\n 31.3 Salient Features of Earthquake Resistant Provisions\n 31.4 Seismic Strengthening Features\n 31.5 Experimental Verification of Codal Provisions\n 31.5.1 Features of Model\n 31.5.2 Seismic Strengthening Arrangements\n 31.6 Shock Table Test on Structural Models\n 31.6.1 Behaviour of Models in Shock Tests\n 31.6.2 Recommendations\n Summary\n References\n32. Retrofitting of Masonry Buildings\n 32.1 Introduction\n 32.2 Failure Mode of Masonry Buildings\n 32.2.1 Out-of-plane Failure\n 32.2.2 In-plane Failure\n 32.2.3 Diaphragm Failure\n 32.2.4 Failure of Connection\n 32.2.5 Non-structural Components\n 32.2.6 Pounding\n 32.3 Methods for Retrofitting of Masonry Buildings\n 32.3.1 Repair\n 32.3.2 Local/Member Retrofitting\n 32.3.3 Structural/Global Retrofitting\n 32.4 Repairing Techniques of Masonry\n 32.4.1 Masonry Cracking\n 32.4.2 Masonry Deterioration\n 32.5 Member Retrofitting\n 32.5.1 Retrofitting Techniques\n 32.6 Structural Level Retrofitting Methods\n 32.6.1 Retrofitting Techniques\n 32.7 Seismic Evaluation of Retrofitting Measures in Stone Masonry Models\n 32.7.1 Behaviour of Retrofitted Models\n 32.7.2 Findings\n Summary\n References\nIndex\nBack cover