دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: XINZHENG LU
سری:
ISBN (شابک) : 9789811595325, 9811595321
ناشر: SPRINGER
سال نشر: 2021
تعداد صفحات: [952]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 83 Mb
در صورت تبدیل فایل کتاب EARTHQUAKE DISASTER SIMULATION OF CIVIL INFRASTRUCTURES به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی فاجعه زلزله زیرساخت های عمرانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چاپ اول این تک نگاری با ارائه شبیه سازی های دقیق و کارآمد آسیب لرزه ای ساختمان ها و شهرها مورد توجه جامعه پژوهشی قرار گرفته است. برای حفظ سرعت پیشرفت در سالهای اخیر، آخرین دستاوردهای ما به این نسخه جدید اضافه شده است، از جمله اجزای ساختاری جدید، شبیهسازیهای ثانویه بلایای طبیعی، واکنشهای اضطراری و بازیابی مقاوم جوامع پس از زلزله. این نسخه به طور جامع طیف وسیعی از رویکردهای مدلسازی عددی، روشهای محاسباتی با عملکرد بالاتر و تکنیکهای تجسم با وفاداری بالا برای شبیهسازی بلایای زلزله ساختمانهای بلند و مناطق شهری را پوشش میدهد. همچنین کاربردهای مهندسی موفق روشهای پیشنهادی را در پروژههای شاخص معمولی نشان میدهد (به عنوان مثال، برج شانگهای و برج CITIC، دو تا از بلندترین ساختمانهای جهان؛ پکن CBD و منطقه خلیج سانفرانسیسکو). در این نسخه مجموعه ای از حدود 60 نشریه ژورنالی با تأثیر بالا گزارش شده است که قبلاً استنادهای بالایی دریافت کرده اند.
The first edition of this monograph, presenting accurate and efficient simulations of seismic damage to buildings and cities, has received significant attention from the research community. To keep abreast of the rapid development in recent years, our latest breakthrough achievements have been added to this new edition, including novel resilient structural components, secondary disaster simulations, emergency responses and resilient recovery of communities after earthquake. This edition comprehensively covers a range of numerical modeling approaches, higher performance computation methods, and high fidelity visualization techniques for earthquake disaster simulation of tall buildings and urban areas. It also demonstrates successful engineering applications of the proposed methodologies to typical landmark projects (e.g., Shanghai Tower and CITIC Tower, two of the world\'s tallest buildings; Beijing CBD and San Francisco Bay Area). Reported in this edition are a collection of about 60 high impact journal publications which have already received high citations.
Foreword of the Second Edition Preface of the Second Edition Preface of the First Edition Contents Abbreviations 1 Introduction 1.1 Research Background 1.2 Significance and Implication of Earthquake Disaster Simulation of Civil Infrastructures 1.3 Research Framework and Outlines References 2 High-Fidelity Computational Models for Earthquake Disaster Simulation of Tall Buildings 2.1 Introduction 2.2 Fiber-Beam Element Model 2.2.1 Fundamental Principles 2.2.2 Uniaxial Stress-Strain Model of Concrete 2.2.3 Uniaxial Stress-Strain Model of Steel Reinforcement 2.2.4 Validation Through Reinforced Concrete Specimens 2.2.5 Stress-Strain Model of Composite Components 2.2.6 Steel Fiber-Beam Element Model Considering the Local Buckling Effect 2.3 Multi-layer Shell Model 2.3.1 Fundamental Principles 2.3.2 High-Performance Flat Shell Element NLDKGQ 2.3.3 High-Performance Triangular Shell Element NLDKGT 2.3.4 Constitutive Models of Concrete and Steel 2.3.5 Implementation of Multi-layer Shell Element in OpenSees 2.3.6 Validation Through Reinforced Concrete Specimens 2.3.7 Collapse Simulation of an RC Frame-Core Tube Tall Building 2.4 Hysteretic Hinge Model 2.4.1 Overview 2.4.2 The Proposed Hysteretic Hinge Model 2.4.3 Validation of the Proposed Hysteretic Hinge Model 2.5 Multi-scale Modeling 2.5.1 Overview 2.5.2 Interface Modeling 2.6 Element Deactivation and Collapse Simulation 2.6.1 Element Deactivation for Component Failure Simulation 2.6.2 Visualization of the Movement of Deactivated Elements Using Physics Engine 2.7 GPU-Based High-Performance Matrix Solvers for OpenSees 2.7.1 Fundamental Conception of General-Purpose Computing on GPU (GPGPU) 2.7.2 High-Performance Solver for the Sparse System of Equations (SOE) in OpenSees 2.7.3 Case Studies 2.8 Physics Engine-Based High-Performance Visualization 2.8.1 Overview 2.8.2 Overall Visualization Framework 2.8.3 Clustering-Based Key Frame Extractions 2.8.4 Parallel Frame Interpolation 2.9 Summary References 3 Earthquake Disaster Simulation of Typical Supertall Buildings 3.1 Introduction 3.2 Earthquake Disaster Simulation of the Shanghai Tower 3.2.1 Overview of the Shanghai Tower 3.2.2 Finite Element Model of the Shanghai Tower 3.2.3 Earthquake-Induced Collapse Simulation 3.2.4 Impact of Soil–Structure Interaction 3.3 Earthquake Disaster Simulation and Design Optimization of the CITIC Tower 3.3.1 Introduction of the CITIC Tower 3.3.2 Different Lateral Force Resisting Systems of CITIC Tower and the Finite Element Models 3.3.3 Earthquake-Induced Collapse Simulation of the Half-Braced Scheme 3.3.4 Earthquake-Induced Collapse Simulation of the Fully-Braced Scheme 3.3.5 Comparison Between the Two Design Schemes 3.3.6 Optimal Design of Minimum Base Shear Force 3.3.7 Optimal Design of Brace-Embedded Shear Wall 3.4 Summary References 4 Comparison of Seismic Design and Resilience of Tall Buildings Based on Chinese and US Design Codes 4.1 Introduction 4.1.1 From Performance-Based Design to Resilience-Based Design 4.1.2 The Rationale of Design Code Comparison 4.2 Comparison of RC Buildings Based on the Chinese and US Design Codes 4.2.1 Comparison of the Seismic Designs 4.2.2 Comparison of the Structural Performance 4.2.3 Comparison of the Seismic Resilience 4.2.4 Concluding Remarks 4.3 Comparison of Steel Buildings Based on the Chinese and US Design Codes 4.3.1 Comparison of the Seismic Designs 4.3.2 Comparison of the Structural Performance 4.3.3 Comparison of the Seismic Resilience 4.3.4 Concluding Remarks 4.4 Summary References 5 Simplified Models for Earthquake Disaster Simulation of Supertall Buildings 5.1 Introduction 5.2 The Flexural-Shear Model 5.2.1 Fundamental Concepts of the Flexural-Shear Model 5.2.2 Flexural-Shear Models of Supertall Buildings 5.3 Floor Acceleration Control of Supertall Buildings with Vibration Reduction Substructures 5.3.1 Overview 5.3.2 Concept of the VRS 5.3.3 Analytical Model of 300 m Supertall Buildings and Ground Motion Records 5.3.4 Floor Acceleration Reduction Effect of VRS 5.3.5 Determination of the Optimal Frequency of the VRS 5.3.6 Validation 5.3.7 Concluding Remarks 5.4 Ground Motion Intensity Measure (IM) for Supertall Buildings 5.4.1 Research Background 5.4.2 A Brief Review of the Existing IMs 5.4.3 An Improved IM for Supertall Buildings 5.4.4 Comparison of Different IMs 5.4.5 Comparison of Different IMs Through IDA-Based Collapse Simulation 5.5 The Fishbone Model 5.5.1 Fundamental Concept of the Fishbone Model 5.5.2 The Fishbone Model of the Shanghai Tower 5.5.3 The Fishbone Models of the CITIC Tower 5.6 Summary References 6 Seismic Resilient Outriggers and Multi-hazard Resilient Frames 6.1 Introduction 6.2 Seismic Resilient Outriggers 6.2.1 Research Background 6.2.2 BRB Outriggers 6.2.3 Sacrificial-Energy Dissipation Outrigger 6.2.4 Friction Damped Outrigger 6.3 Multi-hazard Resistant Concrete Frames 6.3.1 Research Background 6.3.2 Experimental Program 6.3.3 Experimental Results 6.3.4 Numerical Simulation of MHRPC Specimens Based on OpenSees 6.3.5 Analytical Model for MHRPC Frame 6.4 Multi-hazard Resilient Composite Frames 6.4.1 Research Background 6.4.2 SAS Components 6.4.3 Experimental Study of MHRSCCF 6.4.4 Design Method for MHRSCCF-2 6.5 Summary References 7 Building Models for City-Scale Nonlinear Time-History Analyses 7.1 Introduction 7.1.1 The Probability Matrix Method 7.1.2 The Capacity Spectrum Method 7.1.3 The Simulation Method Based on Nonlinear MDOF Models and Time-History Analyses 7.1.4 Organization of This Chapter 7.2 Nonlinear MDOF Shear Model of Multi-story Buildings 7.2.1 Overview 7.2.2 Nonlinear MDOF Shear Model 7.2.3 Parameter Determination for Multi-story Buildings in China 7.2.4 Parameter Determination of Backbone Curve Based on the HAZUS Data 7.2.5 Calibration of the Hysteretic Parameter 7.2.6 Validation of the Proposed Parameter Determination Method 7.3 Nonlinear MDOF Flexural-Shear Model of Tall Buildings 7.3.1 Overview 7.3.2 Nonlinear MDOF Flexural-Shear Model 7.3.3 Parameter Calibration Based on Building Attribute Data 7.3.4 Validation and Application of the Proposed NMFS Model to Individual Tall Buildings 7.3.5 Application of the Proposed NMFS Model for Seismic Simulation of Regional Tall Buildings 7.4 Parametric Sensitivity Study on City-Scale Nonlinear THA 7.4.1 Research Background 7.4.2 The FOSM and Monte Carlo Methods 7.4.3 Case Study 7.4.4 Concluding Remarks 7.5 City-Scale Nonlinear Time-History Analysis Considering Site-City Interaction Effects 7.5.1 Research Background 7.5.2 City-Scale Nonlinear THA of Buildings Considering SCI Effects 7.5.3 Validation Using Shaking Table Test 7.5.4 Case Study of SCI Effects in a 3D Basin 7.5.5 Case Study of Tsinghua University Campus 7.5.6 Concluding Remarks 7.6 Multi-LOD Seismic-Damage Simulation of Urban Buildings 7.6.1 Research Background 7.6.2 Multi-source Data and Multi-LOD Seismic-Damage Simulation 7.6.3 Implementation of the Multi-LOD Seismic-Damage Simulation 7.7 Summary References 8 Regional Seismic Loss Estimation of Buildings 8.1 Introduction 8.2 The Building-Level Loss Estimation Method 8.2.1 Overview 8.2.2 Damage Assessment of Multi-story Buildings 8.2.3 Damage Assessment of Reinforced Concrete (RC) Tall Buildings 8.3 Regional Seismic Loss Prediction Based on FEMA P-58 and Field Investigation Data 8.3.1 Overview 8.3.2 Prediction Methodology 8.3.3 Case Study: Regional Seismic Loss Prediction of the Tsinghua University Campus 8.3.4 Results and Discussion on Seismic Loss Predictions 8.3.5 Findings of the Seismic Loss Prediction Study 8.4 Seismic Loss Predictions Based on BIM and FEMA P-58 8.4.1 Overview 8.4.2 Integrated BIM and FEMA P-58 Framework 8.4.3 Technical Implementation 8.4.4 Case Study 8.4.5 Concluding Remarks 8.5 Seismic Loss Assessment Using Various-LOD BIM Data 8.5.1 Overview 8.5.2 Limitations of the FEMA P-58 Method 8.5.3 Vulnerability Function of Building Components with Various LODs 8.5.4 Modeling Rules and the Information Extraction for BIM 8.5.5 Case Study 8.5.6 Concluding Remarks 8.6 Seimsic Loss Prediction Combiningg GIS and FEMA P-58 8.6.1 Overview 8.6.2 Estimate the Type of Components 8.6.3 Estimate the Quantity of Components 8.7 Summary References 9 Visualization and High-Performance Computing for City-Scale Nonlinear Time-History Analyses 9.1 Introduction 9.2 2.5D Visualization Model 9.3 3D Visualization Model 9.3.1 Overview 9.3.2 The Proposed 3D Simulation Methodology 9.3.3 3D-GIS Data Generation 9.3.4 High-Fidelity Visualization Using 3D Urban Polygon Model 9.3.5 Implementation 9.3.6 Case Study 9.4 Photo-Realistic Visualization Based on Oblique Aerial Photography 9.4.1 Overview 9.4.2 Visualization Framework 9.4.3 Detailed Technical Implementations for Visualization Framework 9.4.4 Case Study 9.4.5 Concluding Remarks 9.5 Coarse-Grained CPU/GPU Collaborative Parallel Computing 9.5.1 Overview 9.5.2 Computing Program Architecture 9.5.3 Performance Benchmarking 9.6 Simulation Using Distributed Computing and Multi-fidelity Models 9.6.1 Various Models with Different Levels of Fidelities 9.6.2 The Overall Computational Framework 9.6.3 Software Implementation 9.6.4 Case Study 9.7 Cloud Computing for Post-earthquake Emergency Response 9.8 Physics Engine-Based Collapse Simulation of Urban Buildings 9.8.1 Overview 9.8.2 Physics Engine-Based Collapse Simulation 9.8.3 Integrated Visualization System 9.8.4 Case Study 9.9 Summary References 10 Fire Following Earthquake and Falling Debris Hazards 10.1 Introduction 10.2 Fire Following Earthquake Simulation Considering Overall Seismic Damage of Sprinkler Systems Based on BIM and FEMA P-58 10.2.1 Overview 10.2.2 Simulation Methods 10.2.3 Case Study: RC Frame Dormitory Building 10.2.4 Concluding Remarks 10.3 Physics-Based Simulation and High-Fidelity Visualization of Regional Fire Following Earthquake Considering Building Seismic Damage 10.3.1 Overview 10.3.2 Proposed Framework of FFE Simulation and Visualization 10.3.3 Methodology 10.3.4 Case Study: Downtown Taiyuan City 10.3.5 Concluding Remarks 10.4 Earthquake-Induced Falling Debris Hazards 10.4.1 Overview 10.4.2 The Proposed Simulation Framework 10.4.3 Methodology 10.4.4 Case Study 10.4.5 Concluding Remarks 10.5 Site Selection for Emergence Shelters Considering Falling Debris Hazards 10.5.1 Overview 10.5.2 The Proposed Framework for Site Selection of Emergency Shelters 10.5.3 Methodology 10.5.4 Case Study: Residential Community Area 10.5.5 Concluding Remarks 10.6 Summary References 11 Post-earthquake Emergency Response and Recovery Through City-Scale Nonlinear Time-History Analysis 11.1 Introduction 11.2 Real-Time Earthquake Damage Assessment Through City-Scale Time-History Analysis 11.2.1 Research Background 11.2.2 Real-Time City-Scale Nonlinear Time-History Analysis 11.2.3 Applications in Earthquake Emergency Response 11.2.4 Concluding Remarks 11.3 Regional Seismic Damage Prediction of Buildings Under a Mainshock–Aftershock Sequence 11.3.1 Overview 11.3.2 Prediction Methodology 11.3.3 The MS–AS Sequence Generation Method 11.3.4 Case Study: Seismic Damage Prediction of Buildings at the Longtoushan Town Damaged in the Ludian Earthquake 11.3.5 Concluding Remarks 11.4 Improving the Accuracy of Near-Real-Time Seismic Loss Estimation Using Post-earthquake Remote Sensing Images 11.4.1 Overview 11.4.2 Framework of Near-Real-Time Seismic Loss Estimation 11.4.3 Evaluation of the Similarity Measures of Collapse Distribution 11.4.4 Case Study: Virtual Earthquakes Occurring on Tsinghua University Campus 11.4.5 Validation Using 2014 Ludian Earthquake 11.4.6 Concluding Remarks 11.5 Post-earthquake Repair Scheduling of City-Scale Buildings with Labor Constraints 11.5.1 Overview 11.5.2 Methodology Framework 11.5.3 Calculation of Residual Functionality 11.5.4 Recovery Curve and Labor Demand Curve 11.5.5 Repair Scheduling and Simulation 11.5.6 Case Study 11.5.7 Concluding Remarks 11.6 Summary References 12 Earthquake Disaster Simulation of Typical Urban Areas 12.1 Introduction 12.2 Earthquake Disaster Simulation of Ludian Earthquake 12.2.1 Seismic Damage to Buildings in Longtoushan Town 12.2.2 Comparison with Field Investigation Data 12.2.3 Comparison with Damage Probability Matrix Method 12.3 Earthquake Disaster Simulation of Beijing CBD 12.3.1 Buildings of Beijing CBD 12.3.2 Earthquake Data of Beijing CBD 12.3.3 LOD 0 Simulation 12.3.4 LOD 1 Simulation 12.3.5 LOD 2 Simulation 12.3.6 LOD 3 Simulation 12.4 Seismic Damage Prediction and Visualization of the New Beichuan City 12.4.1 Research Background 12.4.2 Building Inventory Data of the New Beichuan City 12.4.3 Ground Motion Simulation for the New Beichuan City 12.4.4 Seismic Damage Simulation Considering Site-City Interaction Effects 12.4.5 High-Fidelity Visualization of Seismic Damage 12.5 Earthquake Disaster Simulation of 1.8 Million Buildings in the San Francisco Bay Area 12.5.1 Research Background 12.5.2 SimCenter Scientific Workflow Application 12.5.3 Seismic Damage Simulation 12.5.4 Fire Following Earthquake Simulation for Downtown San Francisco 12.6 Earthquake Disaster Simulation of Xi’an, Taiyuan and Tangshan Cities in China 12.6.1 Earthquake Disaster Simulation of Baqiao District in Xi’an City 12.6.2 Earthquake Disaster Simulation for Taiyuan and Tangshan Cities 12.7 Summary References 13 Conclusions 13.1 Major Achievements and Contributions 13.2 A Future Perspective