دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Kent C. Condie
سری:
ISBN (شابک) : 0128199148, 9780128199145
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 408
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Earth as an Evolving Planetary System به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمین به عنوان یک سیستم سیاره ای در حال تکامل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زمین به عنوان یک منظومه سیاره ای در حال تکامل، ویرایش چهارم موضوعات کلیدی مربوط به تکامل و تعامل در طول زمان پوسته زمین، گوشته، هسته، اتمسفر، هیدروسفر و بیوسفر را مورد بحث قرار می دهد. این به این سؤالات میپردازد که چرا زمین در میان سیارات منظومه شمسی منحصربهفرد است و چگونه زیرسیستمهای مختلف این سیاره در طول 4.6 میلیارد سال در سیاره قابل سکونتی که ما در آن زندگی میکنیم، تعامل داشتهاند. این نسخه جدید شامل بیش از 100 صفحه جدید از مواد، داده ها و تصاویر است و یک مرجع کلیدی برای دانشجویان و محققان علوم زمین و سیاره شناسی است. زمین به عنوان یک سیستم سیارهای در حال تکامل، ویرایش چهارم شامل مواد جدیدی است که از نسخه سوم در دسترس قرار گرفته است، از جمله بخشهای جدید در مورد ناپیوستگی لیتوسفر میانی، ژئونوترینوها، اکسیداسیون گوشته، ظهور قاره، چرخههای زمین (فصل جدید) و فرآیندهای بازیافت، تکامل زمین از یک درپوش راکد به یک رژیم تکتونیکی صفحهای، بحث بر سر چگونگی رشد قارهها، زمان شروع تکتونیک صفحهای و سیارات فراخورشیدی.
Earth as an Evolving Planetary System, Fourth Edition discusses key topics dealing with the evolution and interaction through time of Earth’s crust, mantle, core, atmosphere, hydrosphere, and biosphere. It addresses the questions of why Earth is unique among planets of the solar system, and how the various subsystems in the planet have interacted over 4.6 billion years in the habitable planet that we live on. This new edition includes over 100 new pages of material, data, and images and is a key reference for students and researchers in Earth and planetary sciences. Earth as an Evolving Planetary System, Fourth Edition includes new material that has become available since the third edition, including new sections on the Mid-lithosphere discontinuity, geoneutrinos, mantle oxidation, continental emergence, Earth cycles (new chapter) and recycling processes, the evolution of Earth from a stagnant lid to a plate tectonic regime, the controversy over how the continents have grown, when plate tectonics began, and exoplanets.
Front Cover Earth as an Evolving Planetary System Copyright Contents Preface Chapter 1: Earth as a planetary system Structure of Earth Plate tectonics Is the Earth unique? Interacting Earth subsystems Great events in Earth history Further reading Chapter 2: The crust Introduction Seismic crustal structure The Moho Crustal layers Crustal types Oceanic crust Seismic features Ocean ridges Ocean basins Volcanic islands Trenches Back-arc basins Transitional crust Oceanic plateaus Arcs Continental rifts Inland-sea basins Continental crust Shields and platforms Orogens Continent size Heat flow and heat production Heat flow distribution Heat production and heat flow in the continents Age dependence of heat flow Exhumation and cratonization Introduction Unraveling pressure-temperature-time histories Some typical P-T-t paths Cratonization Processes in the continental crust Rheology The role of fluids and crustal melts Crustal composition Approaches Seismic wave velocities Seismic reflections in the continental crust Sampling of Precambrian shields Fine-grained detrital sediments Exhumed crustal blocks Crustal xenoliths An estimate of crustal composition Continental crust Oceanic crust Complementary compositions of continental and oceanic crust Crustal provinces and terranes Crustal province and terrane boundaries The United Plates of America Further reading Chapter 3: Tectonic settings Introduction Ocean ridges Ocean-ridge basalts Ophiolites General features Tectonic setting and emplacement Ophiolite production Precambrian ophiolites Tectonic settings related to mantle plumes Large igneous provinces Oceanic plateaus and aseismic ridges Rifted continental margins Continental flood basalts Hotspot volcanic islands Giant mafic dyke swarms Continental rifts General features Rock assemblages Rift development and evolution Cratons and passive margins Convergent margins Subduction-related rock assemblages Trenches Accretionary prisms Forearc basins Arcs Back-arc basins Remnant arcs Retroarc foreland basins Arc processes Flat slab subduction Convergent margin metamorphism Arc magmas Compositional variation of arc magmas Orogens Three types of orogens Collisional orogens Accretionary orogens Intracratonic orogens Temperature-magnitude classification Orogenic rock assemblages Tectonic elements of collisional orogens Sutures Foreland and hinterland basins The Himalayas Uncertain tectonic settings Anorogenic granites General features Massif anorthosites Tectonic setting Archean greenstones and granitoids General features Greenstone volcanics Greenstone sediments Granitoids Greenstone tectonic settings Mineral and energy deposits Introduction Mineral deposits Ocean ridges Arc systems Orogens Continental rifts and LIPs Cratons and passive margins Archean greenstones Energy deposits Further reading Chapter 4: The mantle Introduction Seismic structure of the mantle Mantle tomography Geoid and density anomalies Temperature distribution in the mantle The lithosphere Introduction Seismic discontinuities and anisotropy Oceanic lithosphere Mantle xenoliths Continental lithosphere Chemical composition Thickness Subductability Delamination Age of subcontinental lithosphere The asthenosphere The Transition Zone The 410-km discontinuity The 520-km discontinuity The 660-km discontinuity The lower mantle General features Descending slabs The D″ layer Spin transitions Water in the mantle Plate driving forces Mantle plumes Introduction Hotspots Plume characteristics Tracking plume tails Plume sources Large low S-wave velocity provinces Mantle composition Introduction Identifying mantle components Summary Depleted mantle HIMU mantle Enriched mantle Helium isotopes Mixing regimes in the mantle Mantle oxidation Overview Convection in the mantle The nature of convection Passive ocean ridges Layered convection Toward a convection model for earth Further reading Chapter 5: The core Introduction Core temperature The inner core Anisotropy of the inner core Inner-core rotation Composition of the core Age of the core Generation of Earth's magnetic field The geodynamo Fluid motions in the outer core Fueling the geodynamo How the geodynamo works What causes magnetic reversals A possible superchron-LIP event connection Origin of the core Segregation of iron in the mantle Siderophile element distribution in the mantle Growth and evolution of the core What the future holds Further reading Chapter 6: Crustal and mantle evolution Introduction The Hadean Extinct radioactivity Hadean zircons Earth's primitive crust Composition of the primitive crust The late heavy bombardment Crustal origin Earth's oldest rocks Origin and growth of continents General features Growth by mafic underplating Oceanic plateaus and continental growth Oceanic arcs and continental growth Growth by plate collisions The role of TTGs Continental growth rates Introduction Freeboard Emergence of continents The role of recycling Overview Evidence for recycling Juvenile crust Introduction Oxygen isotopes Nd isotopes Hf isotopes in detrital zircons Model ages Growth or preservation Growth models Preservation models Continental growth in the last 200 Myr Continental growth in the last 4 Gyr Geographic distribution of juvenile continental crust Global changes at the end of the Archean Introduction Geochemical changes Major elements Incompatible trace elements Metals Granitoids Oxygen isotopes in detrital zircons and shales Mantle geochemical components The 2.4-2.2Ga crustal age gap In search of a cause Evolution of the subcontinental lithosphere The onset of plate tectonics Plate tectonic indicators Ophiolites in space and time Changing tectonic regimes at 1000Ma Can continental crust form without plate tectonics How did plate tectonics begin: Thermal constraints When did plate tectonics begin: The ongoing saga Introduction Constraints from the geologic record What came before plate tectonics Earth's thermal history Introduction How hot was the Archean mantle? Thermal models Further reading Chapter 7: Earth cycles Introduction High-frequency cycles Mid-frequency cycles Low-frequency cycles General features Origin of low-frequency cycles Supercontinents Introduction Methods of supercontinent reconstruction Assembly of supercontinents Breakup of supercontinents The mantle plume model The mantle upwelling model Archean supercratons The story of three supercontinents Nuna (Columbia) Rodinia Gondwana-Pangea A possible future supercontinent The supercontinent cycle Introduction Episodic ages Patterns of cyclicity Plate speeds through time LIP events related to the supercontinent cycle Imprints of the supercontinent cycle on earth history Mineral deposit age patterns Sr isotopes in marine carbonates Sea level variations Supercontinents and evolution The carbon cycle Supercontinent formation Supercontinent breakup LIP events Epilogue Further reading Chapter 8: The atmosphere and hydrosphere The modern atmosphere The primitive atmosphere The postcollision atmosphere Introduction Composition of the early atmosphere Growth rate of the atmosphere The faint young Sun paradox The Precambrian atmosphere The carbon cycle Oxygen makes its entrance Oxygen controls in the atmosphere Geologic indicators of ancient oxygen levels Banded iron formation Redbeds and sulfates Detrital uraninite deposits Uranium in shales Paleosols Biologic indicators Molybdenum in black shales Mass-independent sulfur isotope fractionation The growth of atmospheric oxygen The carbon isotope record General features The 2200 Ma carbon isotope excursion The sulfur isotope record Phanerozoic atmospheric history The hydrosphere Introduction Sea level The early oceans Changes in the composition of seawater with time Marine carbonates The dolomite-limestone problem Evaporites Banded iron formation The biochemical record of sulfur Sedimentary phosphates The temperature of seawater Ocean volume through time Euxinia in the Proterozoic oceans Paleoclimates Introduction Paleoclimatic indicators Long-term paleoclimate driving forces Glaciation An overview The snowball model Precambrian climatic regimes Phanerozoic climatic regimes Overview Glaciations The mid-Cretaceous LIP event General features Carbon isotopes and trace metals Seeking a cause Epilogue Further reading Chapter 9: The biosphere Introduction The role of impacts The RNA world Hydrothermal vents and terrestrial hot springs A possible site for the origin of life Experimental and observational evidence The first life Evidence of early life Anoxygenic photosynthesis Oxygenic photosynthesis The tree of life The first fossils Possibility of extraterrestrial life Appearance of eukaryotes Origin of metazoans Stromatolites Neoproterozoic multicellular organisms The Cambrian Explosion Evolution of phanerozoic life forms Biological benchmarks Mass extinctions Introduction Episodic distributions Glaciation and mass extinction Impact-related extinctions Environmental changes Earth-crossing asteroids Comets General features Evidence for impact LIP volcanism Shallow-water anoxia Catastrophic methane release Summary The end Triassic extinction General features Evidence for impact LIP volcanism Chicxulub and the K/T impact site Possibility of multiple K/T impacts Conclusions Impact and a 580-Ma extinction Further reading Chapter 10: Comparative planetary evolution Introduction Condensation and accretion of the planets The molecular cloud Emergence of planets Homogeneous accretion Chemical composition of Earth and Moon Accretion of Earth Magma oceans The first 700 million years Members of the solar system The planets Mercury Mars Overview Crustal dichotomy Surface features Martian composition SNC meteorites Martian history Venus In comparison to Earth Volcanism The Venusian core Tessera terrains and plateaus Thermal history An evolving stagnant lid regime The outer planets Satellites and planetary rings General features Planetary rings The Moon Overview of the Moon Constraints on Lunar origin Introduction The fission model Double planet models Capture models Giant impactor model Early thermal history of the Moon Rotational history of the Earth-Moon system Satellite origin Comets Asteroids Meteorites Introduction Chondrites Refractory inclusions and isotopic dichotomy Iron meteorites and parent body cooling rates Asteroid sources Meteorite chronology Volcanism in the solar system Planetary crusts Plate tectonics Mineral evolution Evolution of the atmospheres of Earth, Venus, and Mars The habitable zone in the solar system Comparative planetary evolution Extrasolar planets General features Distribution of extrasolar planets Super-Earths Further reading References Index Back Cover