ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Dynamics of Fluids in Fractured Rock

دانلود کتاب دینامیک مایع در سنگ راک

Dynamics of Fluids in Fractured Rock

مشخصات کتاب

Dynamics of Fluids in Fractured Rock

ویرایش:  
 
سری:  
ISBN (شابک) : 9780875909806, 9781118669662 
ناشر:  
سال نشر:  
تعداد صفحات: 402 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Dynamics of Fluids in Fractured Rock به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دینامیک مایع در سنگ راک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب دینامیک مایع در سنگ راک

محتوا:


توضیحاتی درمورد کتاب به خارجی

Content:



فهرست مطالب

Title Page
......Page 3
Copyright......Page 4
CONTENTS......Page 5
PREFACE......Page 9
Editorial Board......Page 10
1. INTRODUCTION......Page 11
3. FLOW IN DEFORMABLE FRACTURES......Page 12
4. GEOTHERMAL SYSTEMS......Page 15
4.1. Locating Fractures and Faults through Seismic Imaging......Page 17
4.2. Characterizing Geothermal Systems through Reservoir Modeling......Page 18
4.3. Some Results of Numerical Studies of Geothermal Reservoirs......Page 19
4.4. Development of Geothermal Systems Charged by Vertical Faults......Page 22
5.7. Hydro geological Investigations......Page 23
5.2. Geochemistry and Isotope Hydrology......Page 25
5.3. Electric Heater Tests......Page 27
5.4. Large-Scale Permeability Test......Page 31
6.1. Equivalent Porous Media Concept......Page 32
6.2. Inverse Methods for Equivalent Media Investigations......Page 33
6.4. Seismic Detection of Fractures......Page 35
7.1. Evidence for Heterogeneous Flow in Fractures......Page 37
7.3. Evidence of Channel Flow from the Stripa 3-D Experiment......Page 38
7.4. A Three-Dimensional Variable-Aperture Model......Page 39
7.6. Heterogeneous Flow in Fractures from the Standpoint of Fluid Mechanics......Page 40
8. THE YUCCA MOUNTAIN PROJECT......Page 42
8.1. Fracture and Fault Properties in the Site-Scale Model......Page 46
8.2. Hydraulic Characterization of Faults......Page 47
8.4. Gas and Heat Flow Processes......Page 49
8.5. Fracture-Matrix Interactions and Heterogeneities......Page 50
8.6. Effects of Major Faults......Page 51
8.8. Geochemistry in the Ambient System......Page 52
8.9. Calibrating Hydrogeologic Parameters for Site-Scale Model......Page 53
8.11. Single Heater Test......Page 54
8.12. Drift Scale Test......Page 56
9. CHAOTIC FLOW IN VADOSE ZONE OF FRACTURED BASALT......Page 57
10. SUMMARY......Page 58
REFERENCES......Page 60
1. INTRODUCTION......Page 69
2. HYDRAULIC TESTING OF LOW PERMEABILITY ROCKS......Page 70
4. AN EXAMPLE FROM MIRROR LAKE, NEW HAMPSHIRE......Page 71
REFERENCES......Page 75
1. INTRODUCTION......Page 77
2. FIELD STUDIES OF PREFERENTIAL FLOW......Page 78
3. CAUSES OF PREFERENTIAL FLOW......Page 79
REFERENCES......Page 81
1. INTRODUCTION......Page 83
2. GEOSTATISTICAL ANALYSIS OF SPATIAL VARIABILITY......Page 86
3. TYPE-CURVE INTERPRETATION OF CROSS-HOLE TEST PP4......Page 91
4. NUMERICAL INVERSE INTERPRETATION OF CROSS-HOLE TEST PP4......Page 96
5. CONCLUSIONS......Page 105
REFERENCES......Page 106
1. INTRODUCTION......Page 109
2. AIR-INJECTION TESTS AND PRESSURE-RESPONSE DATA......Page 111
3.1. Modeling Details?Discretization, Boundary and Initial Conditions......Page 114
3.3. Simultaneous Inversion by Numerical Modeling......Page 115
4.1. Borehole Cluster 57-61......Page 116
4.2. Borehole Clusters 74-78 and 185-186......Page 119
4.4. Implication of Air-Injection Measurements for the Heater Test......Page 121
5. SUMMARY AND CONCLUSIONS......Page 122
REFERENCES......Page 123
1. INTRODUCTION......Page 125
1.1. Study Area......Page 126
1.2. Previous Approaches......Page 127
2. CONCEPTUAL MODEL OF RECHARGE......Page 128
3. NUMERICAL MODEL OF RECHARGE......Page 129
4.1. Net Infiltration......Page 130
4.2. Estimation of Regional Recharge......Page 133
5. SUMMARY AND CONCLUSIONS......Page 136
REFERENCES......Page 137
1. INTRODUCTION......Page 139
2. REVIEW OF FIELD INVESTIGATIONS OF FLOW THROUGH VARIABLY SATURATED FRACTURED ROCKS......Page 140
3. SITE LOCATION, TEST DESIGN, AND INSTRUMENTATION LAYOUT......Page 141
4.1. Temporal Variations of Infiltration Rates......Page 144
4.2. Temporal and Spatial Variations of Outflow and Water Recovery......Page 145
4.3. Tensiometry......Page 147
4.4. Drip Intervals......Page 149
5. DISCUSSION OF PROCESSES AFFECTING WATER DYNAMICS IN FRACTURED BASALT......Page 150
5.1. Assessing the Range of the Volume-Averaged Hydraulic Conductivity......Page 153
6. CONCLUSIONS......Page 154
REFERENCES......Page 155
1. INTRODUCTION......Page 157
2. MECHANISMS FOR PREFERENTIAL FLOW......Page 158
4.1. Observations of Preferential Flow Features......Page 159
4.2. Intermittent Flow in Unsaturated Fractures......Page 161
4.3. Effect of Preferential Flow on Solute Transport in Unsaturated Fractures......Page 162
5. SUMMARY......Page 163
REFERENCES......Page 164
1. INTRODUCTION......Page 166
2.1. Induced Fracture......Page 167
2.2. Apparatus......Page 168
3. POROSITY MAPPING......Page 169
4. TWO-PHASE FLOW......Page 173
5. SUMMARY......Page 176
REFERENCES......Page 177
1. INTRODUCTION......Page 178
2.1. Experimental Results......Page 179
2.2. Geometric Interpretation of Experimental Results......Page 182
2.3. Hydromechanical Modeling......Page 184
3.1 Experimental Results......Page 187
3.2. Geometrical Interpretation of Experimental Results......Page 188
4. CONCLUSIONS......Page 190
REFERENCES......Page 192
1.1 Overview......Page 194
1.4 Methodology......Page 196
2.1 Correlation Coefficients......Page 198
2.2 Contingency Tables......Page 200
2.4 Neural Net Analyses......Page 204
3. CONCLUSIONS......Page 208
4. RECOMMENDATIONS......Page 209
REFERENCES......Page 210
1. INTRODUCTION......Page 212
2. FRACTURE DENSITY AND CONNECTIVITY......Page 213
3. POWER-LAW NETWORKS......Page 214
4. CONNECTIVITY OF ISOTROPIC POWER-LAW NETWORKS......Page 215
5. ANISOTROPIC POWER-LAW NETWORKS......Page 216
6. MODEL IMPLICATIONS......Page 217
7. SUMMARY......Page 218
REFERENCES......Page 219
1. INTRODUCTION......Page 221
2. FROM THE NAVIER-STOKES EQUATIONS TO THE STOKES EQUATIONS......Page 222
3. FROM THE STOKES EQUATIONS TO THE LUBRICATION EQUATION......Page 226
4. IMPLICATIONS OF THE LUBRICATION THEORY APPROXIMATION......Page 228
5. EFFECT OF CONTACT AREA......Page 229
6. WATER FLOW UNDER UNSATURATED CONDITIONS......Page 230
8. CONCLUSIONS......Page 231
REFERENCES......Page 232
2. VOLUME-AVERAGED CONTINUUM APPROACHES......Page 233
3. ABSOLUTE AND RELATIVE PERMEABILITY......Page 235
4. HIGH-RESOLUTION FINITE DIFFERENCES......Page 236
WATER INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS......Page 237
6. NUCLEAR WASTE DISPOSAL......Page 238
7. SCALING RELATIONSHIPS......Page 239
8. CONCLUDING REMARKS......Page 240
REFERENCES......Page 241
1. INTRODUCTION......Page 243
2. BRIEF REVIEW OF UPSCALING ISSUES IN IMMISCIBLE DISPLACEMENTS IN POROUS MEDIA......Page 245
3.1. Impermeable Matrix DFN......Page 247
3.2. Permeable Matrix......Page 249
4. CONCLUSION......Page 255
REFERENCES......Page 256
1.I. Background and Motivation......Page 258
1.2. Objective and Scope......Page 259
2.1. Conceptualization......Page 260
2.2. Mathematical Modeling......Page 261
3.1. Case 1?Chalk River Block......Page 262
3.2. Case 2? El Cabril......Page 264
3.3. Case 3? FEBEX Model......Page 267
4. SUMMARY AND CONCLUSIONS......Page 270
REFERENCES......Page 271
1. BACKGROUND......Page 273
2. BOUNDARY INTEGRAL METHODS......Page 274
3. COUPLED MATRIX FLOW AND ENERGY......Page 275
4. COMPATIBILITY EQUATIONS......Page 276
4.2 Single-Fluid Material Change Discrete-Jump Approach......Page 277
5. LIQUID FLOW IN FRACTURES......Page 278
5.1 Constitutive Equations......Page 279
5.2 Behavior at a Fracture Intersection......Page 280
6. EXAMPLE PROBLEM......Page 281
7. SUMMARY......Page 282
APPENDIX......Page 283
REFERENCES......Page 284
Critique of Dual Continuum Formulations of Multicomponent Reactive Transport in Fractured Porous Media......Page 286
2. CONTINUUM MODELS FOR REACTIVE FLOWS IN FRACTURED MEDIA......Page 287
2.1 Discrete Fracture Model DFM......Page 289
2.2 Dual Continuum Models: DCCM & DCDM Approaches......Page 290
2.3 Equivalent Continuum Model ECM......Page 294
3. DFM-DCCM MODEL COMPARISON......Page 297
4.2 DCCM: Harmonic Versus Arithmetic Averaging......Page 299
5. EXAMPLE OF IN SITU COPPER LEACHING......Page 301
6. CONCLUSION......Page 302
REFERENCES......Page 303
1. INTRODUCTION......Page 304
2. FORMULATION......Page 305
3. EVALUATION OF EFFECTIVE PARAMETERS AND CONSTITUTIVE RELATIONS......Page 308
5. APPLICATION EXAMPLES......Page 309
5.1. Example 1?Comparison with the Dual-Permeability Model Results......Page 310
5.2 Example 2?Comparisons with Measured Temperature Profiles......Page 311
5.3 Example 3?Single-Phase, 2-D Flow and Transport......Page 312
6. CONCLUSIONS......Page 314
NOMENCLATURE......Page 315
REFERENCES......Page 316
1. INTRODUCTION......Page 318
2.1. Geology and Regional Flow System......Page 319
3. ALTERNATIVE CONCEPTUAL APPROACHES......Page 320
3.1. Effective-Porosity Approach......Page 321
3.2. Dual-Porosity Approach......Page 322
4.1. Model Domain......Page 323
5. RESULTS......Page 324
6. DISCUSSION......Page 325
REFERENCES......Page 327
1. INTRODUCTION......Page 328
2. DUAL-PERMEABILITY FLOW AND TRANSPORT MODEL......Page 329
3. FLUID FLOW AND SIMPLE TRANSPORT AT WELL SD-9......Page 331
4. RADIONUCLIDE TRANSPORT CALCULATIONS......Page 332
4.1. Mineralogic Data......Page 333
5. UNSATURATED ZONE TRANSPORT TEST PRELIMINARY FIELD OBSERVATIONS......Page 334
6. DISCUSSION AND CONCLUSIONS......Page 338
REFERENCES......Page 340
1. INTRODUCTION......Page 342
2.2. Solute Transport, Matrix Diffusion and Equivalent Porous Media......Page 343
2.3. Environmental Tracers......Page 344
3. SIMULATIONS......Page 345
4. SITE DESCRIPTION AND METHODS......Page 347
5. RESULTS......Page 348
5.1. The Upper Flow System......Page 349
6. DISCUSSION......Page 350
REFERENCES......Page 351
1. INTRODUCTION......Page 353
2. CHLORINE-36 AS AN ENVIRONMENTAL TRACER......Page 354
3. HYDROGEOLOGIC SETTING......Page 355
4. CONCEPTUAL MODEL OF UNSATURATED ZONE FLOW AND CHLORINE-36 TRANSPORT AT YUCCA MOUNTAIN......Page 356
5. CHLORINE-36 DISTRIBUTION IN THE UNSATURATED ZONE......Page 357
6. DATA ANALYSIS......Page 358
8.1 Hypothesis 1......Page 359
9. NUMERICAL SIMULATIONS......Page 360
9.1 One-Dimensional Model: In and Away From Fault Zones......Page 361
9.2 Two-Dimensional Model Along Main Drift of ESF......Page 363
10. SUMMARY......Page 364
REFERENCES......Page 365
1. INTRODUCTION......Page 367
2. PRESSURE INTERFERENCE TESTS......Page 370
2.1. Observation Slim Holes GH-3 andN2-KW-2......Page 372
2.2. Slim Hole GH-4......Page 373
2.3. Slim Hole GH-5......Page 374
3.1. Slim Hole GH-5......Page 375
3.2. Slim Hole N2-KW-3......Page 376
4. CONCLUSIONS......Page 377
REFERENCES......Page 378
1. INTRODUCTION......Page 380
2. INVERSE MODELING CONCEPT......Page 381
3. IDENTIFICATION OF FRACTURE PROPERTIES......Page 382
4.2. The Krafla Geothermal Field......Page 384
4.4. Conceptual Models......Page 385
4.5. Inverse Modeling Results......Page 386
4.6. Sensitivity and Error Analysis......Page 388
5. SUMMARY AND CONCLUSIONS......Page 389
REFERENCES......Page 390
1. INTRODUCTION......Page 391
2. LABORATORY-SCALE ASSESSMENT OF SOLUTE MIGRATION IN FRACTURED MEDIA......Page 392
3. INTERMEDIATE-SCALE ASSESSMENT OF SOLUTE MIGRATION IN FRACTURED MEDIA......Page 393
4.1. Vadose Zone......Page 394
4.2. Saturated Zone......Page 397
REMEDIATION NEEDS AND BASIC RESEARCH......Page 400
REFERENCES......Page 401




نظرات کاربران