دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Thomas W. Kerlin, Belle R. Upadhyaya سری: ISBN (شابک) : 0128152613, 9780128152614 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 377 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Dynamics and Control of Nuclear Reactors به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک و کنترل راکتورهای هسته ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دینامیک و کنترل راکتورهای هسته ای آخرین دانش و تحقیقات در زمینه دینامیک راکتور، کنترل و ابزار دقیق را ارائه می دهد. عوامل مهم در تضمین عملکرد ایمن و اقتصادی نیروگاه های هسته ای. این کتاب یک منبع واحد را در اختیار مهندسان فعلی و آینده قرار میدهد که شامل تمام اطلاعات مرتبط، از جمله درمانهای دقیق در مورد مدلسازی، شبیهسازی، ویژگیهای عملیاتی و ویژگیهای دینامیکی راکتورهای آب سبک تحت فشار، راکتورهای آب سبک در حال جوش، راکتورهای آب سنگین تحت فشار و مذاب است. -رآکتورهای نمک همچنین اطلاعات مربوطه، اما با جزئیات کمتری در مورد راکتورهای کوچک مدولار، راکتورهای سریع سدیم و راکتورهای خنک شونده با گاز ارائه می دهد.
Dynamics and Control of Nuclear Reactors presents the latest knowledge and research in reactor dynamics, control and instrumentation; important factors in ensuring the safe and economic operation of nuclear power plants. This book provides current and future engineers with a single resource containing all relevant information, including detailed treatments on the modeling, simulation, operational features and dynamic characteristics of pressurized light-water reactors, boiling light-water reactors, pressurized heavy-water reactors and molten-salt reactors. It also provides pertinent, but less detailed information on small modular reactors, sodium fast reactors, and gas-cooled reactors.
Cover Dynamics and Control of Nuclear Reactors Copyright Dedication Preface Communication with authors Acknowledgments 1 ntroduction Introduction System dynamics and control design References 2 Nuclear reactor designs Introduction Generation I reactors Generation II reactors Generation III reactors Generation III+ reactors Generation IV reactors Advanced reactors Early twenty-first century construction References Further reading 3 The point reactor kinetics equations Neutronics Delayed neutrons Delayed neutrons from fission products Photoneutrons from nuclei excited by gamma rays Development of the point reactor kinetics equations Alternate choices for the neutronic variable Perturbation form of the point kinetics equations Transfer functions Frequency response function Stability Fluid-fuel reactors References Further reading 4 Solutions of the point reactor kinetics equations and interpretation Evolution of simulation methods Numerical analysis Maneuvers in a zero power reactor Analytical solutions Solutions for small perturbations Sinusoidal reactivity and frequency response Fluid fuel reactor response The inhour equation References Further reading 5 Subcritical operation The neutron source Relation between neutron flux and reactivity in a subcritical reactor The inverse multiplication factor Responses during startup Power ascension Further reading 6 Fission product poisoning The problem Dynamics of xenon-135 Xe-135 production Xe-135 losses Equations for Xe-135 behavior Steady state Xe-135 Xe-135 poisoning Behavior of Xe-135 after Startup Xe-135 after Shutdown Xe-135 poisoning after a power increase Xe-135 poisoning after power maneuvers Coupled neutronic-xenon transients Xenon-induced spatial oscillations Xenon in molten salt reactors Samarium-149 poisoning Summary References 7 Reactivity feedbacks Basics Fuel temperature feedback in thermal reactors Moderator temperature feedback in thermal reactors Pressure and void coefficients in thermal reactors Fission product feedback Combined reactivity feedback Power coefficient of reactivity and the power defect Reactivity feedback effect on the frequency response Destabilizing negative feedback: A physical explanation Explanation of stability using state-space representation References 8 Reactor control Introduction Open-loop and closed-loop control systems Basic control theory Manual control On-off controller Proportional controller Integral controller Differential controller Combined controllers An example of proportional and integral controller for a first order system Proportional controller Integral controller Advanced controllers Control of a zero-power reactor Control options in power reactors Effect of inherent feedbacks on control options Load following operation The role of stored energy Steady-state power distribution control Important reactivity feedbacks and control strategies for various reactor types References 9 Space-time kinetics Introduction Diffusion theory Multi-group diffusion theory Calculation requirements Computer software Models and computational methods Finite difference methods Finite element method (FEM) Modal methods Quasi-static methods Nodal methods References 10 Reactor thermal-hydraulics Introduction Heat conduction in fuel elements Heat transfer to liquid coolant Boiling coolant Plenum and piping models Pressurizer Heat exchanger model Steam generator model U-Tube steam generator (UTSG) Once-through steam generator (OTSG) Balance-of-Plant (BOP) system models Reactor system models References Further reading 11 Nuclear reactor safety Introduction Reactor safety principles Early accidents with fuel damage Accidents Assessment Analysis of potential reactor accidents Accidents in Generation-II power reactors Three mile Island [14] Chernobyl [15] Fukushima Dai-ichi [16] Consequences and lessons learned References 12 Pressurized water reactors Introduction PWR characteristics [1-3] The reactor core The pressurizer Steam generators U-tube steam generator (UTSG) Once-through steam generator (OTSG) Horizontal steam generator Reactivity feedbacks Power maneuvering Steady-state programs for PWRs Heat transfer in a steam generator Fuel-to-coolant heat transfer Equivalence between reactor power and power delivered to the steam generator at steady state Energy change in the coolant Development of a steady-state program Steady-state program for PWRs with once-through steam generators (OTSG) Control rod operating band and control rod operation Feedwater control for PWR with U-tube steam generators [2, 4, 5] Control of a PWR with once-through steam generators [3] Turbine control Summary of main PWR controllers PWR safety systems Example of a PWR simulation References Further reading 13 Boiling water reactors Introduction History of BWR design evolution BWR-1 BWR-2 BWR-3 BWR-4 BWR-5 BWR-6 ABWR Characteristics of BWRs General features of a BWR Recirculation flow and jet pumps Other features of BWRs Reactivity feedbacks in BWRs Reactivity and recirculation flow Total reactivity balance BWR dynamic models BWR stability problem and impact on control The power flow map and startup On-line stability monitoring Power maneuvering BWR control strategy BWR safety Advantages and disadvantages References Further reading 14 Pressurized heavy water reactors Introduction PHWR characteristics Neutronic features [3] Temperature feedback in heavy water reactors The void coefficient Reactivity control mechanisms Control systems Unit power regulator Reactor regulating system Pressure and inventory control Steam generator level control Steam generator pressure control Maneuvering Reactor dynamics Modeling strategy Reactor power response to reactivity insertion References 15 Nuclear plant simulators Introduction Types of simulators and their purpose Simulator games Desk-top simulators Control room simulators Desk-top simulators Introduction PC simulation Using an IAEA simulator Simulation of PWR and BWR plant transients PWR simulation BWR simulation How to obtain an IAEA simulator? Internet-based desk-top simulators Control room simulators References 16 Nuclear plant instrumentation Introduction Sensor characteristics Neutron and gamma ray detectors Ionization chambers Fission detectors Self-powered neutron detectors Scintillation detectors Gamma thermometers Nitrogen-16 measurement Temperature sensors Resistance thermometers Thermocouples Thermowells and bypass installation Advanced temperature sensors Pressure sensors Flow sensors Flow vs. pressure drop Advanced flowmeters Level sensors Differential pressure Bubbler Actuator status sensors PWR instrumentation BWR instrumentation CANDU (PHWR) reactor instrumentation High temperature reactor instrumentation Liquid metal fast breeder reactor (LMFBR) instrumentation High temperature gas-cooled reactor (HTGR) instrumentation Molten salt reactor instrumentation References Further reading APPENDIX A Generation II reactor parameters Pressurized water reactor (PWR) Boiling water reactor (BWR) Pressurized heavy water reactor (PHWR): CANDU reactor References APPENDIX B Advanced reactors Introduction Design possibilities A note about reactors that use thorium Advanced reactor marketplace Large evolutionary reactors Pressurized water reactors Boiling water reactors Pressurized heavy water reactors Large developmental reactors Gas-cooled reactors Liquid metal fast breeder reactors Molten salt reactors Heavy water reactors Small reactors Introduction Incentives Small reactor list Dynamics of advanced reactors References APPENDIX C Basic reactor physics Introduction Neutron interactions Reaction rates and nuclear power generation Nuclear fission Fast and thermal neutrons Relation between specific power and neutron flux Neutron lifetime and generation time Multiplication factor and reactivity Computing effective multiplication factor Neutron transport and diffusion References APPENDIX D Laplace transforms and transfer functions Introduction Defining the Laplace transform Calculating Laplace transforms The inverse Laplace transform Method of residues Inverse transform using partial fractions Transfer functions Feedback transfer functions The convolution integral Laplace transforms and partial differential equations References APPENDIX E Frequency response analysis of linear systems Frequency response theory Computing frequency response function Systems with oscillatory behavior Systems with time delay dynamics Frequency response of distributed systems Frequency response measurements References APPENDIX F State variable models and transient analysis Introduction State variable models General solution of the multiple-input multiple-output (MISO) linear Definition of multiple-input multiple output (MIMO) systems Transfer function representation of MIMO systems Transient response of MIMO systems The state transition matrix The matrix exponential solution Sensitivity analysis Numerical solutions of ordinary differential equations Euler's method Runge-Kutta order-two method Solutions for partial differential equations Examples of partial differential equations Solution of partial difference equations using the finite difference method Introduction Formulation of grids and nodes [8] FDM solution of the two-dimensional heat conduction problem [8] Solution of partial difference equations using the finite element method References APPENDIX G Matlab and Simulink: A brief tutorial Introduction Getting started with simulink Simulation of a single-input single-output (SISO) system Simulation of a closed-loop system with P-I controller Solving linear differential equations using state-space models Computing step response using a transfer function Computing eigenvalues and eigenvectors References APPENDIX H Analytical solution of the point reactor kinetics equations and the prompt jump approximation Introduction Analytical solution of the point kinetics equations The prompt jump An example APPENDIX I A moving boundary model Introduction Development of a moving boundary model APPENDIX J Modeling and simulation of a pressurized water reactor Introduction Linearized isolated core neutronic model Numerical values of coefficients in the isolated core neutronic model Fuel-to-coolant heat transfer Numerical values of coefficients in the isolated core thermal-hydraulic model State space representation of dynamic equations Simulation of PWR isolated core dynamics response Frequency response characteristics of reactor core dynamics PWR NSSS dynamics Neutronics Core thermal-hydraulics T-average controller Piping and plenums Pressurizer and its controller U-tube steam generator modeling and control NSSS model Plant system parameters used in the models NSSS simulated response to a steam valve perturbation References Further reading APPENDIX K Modeling and simulation of a molten salt reactor Introduction Molten salt reactor experiment (MSRE) Lumped parameter model of the MSRE Sub-system models and characteristics Nodal model of the MSRE system Equations describing neutronics and reactor heat transfer Parameters used in simulation models Results of simulation of MSR dynamics References Further reading Index A B C D E F G H I J K L M N O P Q R S T U V W X Z Back Cover