دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Vadim V. Silberschmidt
سری: Woodhead Publishing Series in Composites Science and Engineering
ISBN (شابک) : 0128239794, 9780128239797
ناشر: Woodhead Publishing
سال نشر: 2022
تعداد صفحات: 649
[650]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 77 Mb
در صورت تبدیل فایل کتاب Dynamic Deformation, Damage and Fracture in Composite Materials and Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تغییر شکل دینامیکی، آسیب و شکست در مصالح و سازه های مرکب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد کامپوزیت، با قرار گرفتن در معرض بارهای دینامیکی بیشتر، به طور فزاینده ای در بخش های هوافضا، دریایی، خودروسازی، ورزش و سایر بخش ها در چند دهه گذشته مورد استفاده قرار گرفته اند. این ویرایش دوم تغییر شکل، آسیب و شکست دینامیکی در مواد و سازههای کامپوزیتی جنبههای مختلف تغییر شکل، آسیب و شکست دینامیکی را، عمدتاً در لایههای کامپوزیتی و سازههای ساندویچی، در طیف وسیعی از حوزههای کاربردی از جمله هوافضا، خودروسازی، دفاع، بررسی میکند. و مهندسی ورزش این کتاب بارگذاری با سرعت کم و بالا را بررسی می کند و حوادث شوک، انفجار و نفوذ را ارزیابی می کند. این نسخه جدید برای پوشش پیشرفتهای مهم جدید مانند استفاده از ساخت افزودنی برای تولید کامپوزیتها، از جمله الیاف تقویتشده، بهروزرسانی شده است. مطالعات ریزساختاری، تجربی، نظری و عددی جدید با ابزارهای پیشرفته نیز گنجانده شده است. این کتاب همچنین دارای چهار فصل جدید است که موضوعاتی مانند لایهبرداری دینامیکی، تغییر شکل و شکست دینامیکی در کامپوزیتهای چاپشده با چاپ سهبعدی، ضربههای بالستیک با پرتابههای تکهتکهکننده و اثر ضربههای متعدد را پوشش میدهد. تغییر شکل و شکست دینامیکی مواد کامپوزیتی را بررسی میکند، جنبههای تجربی، تحلیلی و عددی را پوشش میدهد. دارای چهار فصل جدید است که موضوعاتی مانند شکستگی سطحی دینامیکی، شکستگی در کامپوزیتهای چاپشده با چاپ سهبعدی، ضربههای بالستیک با پرتابههای تکه تکهکننده، و تأثیر آدرسهای ضربهای چندگانه را پوشش میدهد. حوزه های کاربردی مانند هوافضا، خودرو، انرژی باد، دفاع و ورزش
Composite materials, with their higher exposure to dynamic loads, have increasingly been used in aerospace, naval, automotive, sports, and other sectors over the past few decades. This second edition of Dynamic Deformation, Damage, and Fracture in Composite Materials and Structures reviews various aspects of dynamic deformation, damage, and fracture, mostly in composite laminates and sandwich structures, in a broad range of application areas including aerospace, automotive, defense, and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast, and penetrative events. This new edition has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting. Examines dynamic deformation and fracture of composite materials, covering experimental, analytical, and numerical aspects Features four new chapters covering topics such as dynamic interfacial fracture, fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting Addresses important application areas such as aerospace, automotive, wind energy, defense, and sports
Dynamic Deformation, Damage and Fracture in Composite Materials and Structures Copyright Contributors Introduction Damage tolerance of composite structures under low-velocity impact Introduction Principles of damage tolerance The different damage types Impact damage Damage detectability Residual strength after impact Impact threat Conclusions References Dynamic interfacial fracture Introduction Conventional analytical approach to modelling dynamic interfacial fracture Mode I fracture Stationary cracks in DCBs Propagating cracks in DCBs Mode II fracture Stationary cracks in ENF specimens Stationary cracks in ELS specimens Stationary cracks in CNF specimens Experimental-numerical hybrid method Dynamic mode I interfacial fracture for stationary crack Theoretical development with vibration Dynamic response of thin beam Dynamic energy release rate and amplitude divergence Theoretical development with wave propagation ERR divergence and energy flux Dynamic energy release rate Simplified dynamic ERR with vibrational deflection Numerical verification Finite element model and verification case Verification for developed theory with vibration Verification for developed theory with wave propagation Crack tip rotation compensation for stationary crack Propagation of dynamic mode I interfacial crack Rate dependency of fracture toughness Theoretical development Analytical solution for constant fracture toughness Analytical solution for rate-dependent fracture toughness Experimental verification Experimental verification for DCB under 6.5ms-1 loading rate Experimental verification for DCB under 10ms-1 loading rate Numerical verification Numerical verification for DCB under 6.5ms-1 loading rate Numerical verification for DCB under 10ms-1 loading rate Crack propagation speed assessment and dynamic ERR Dynamic mode II interfacial fracture Introduction Theoretical development Dynamic response of ELS specimen Dynamic energy release rate Dynamic factor Normal modes and crack-tip-loading condition ith vibration modal contribution to ERR Numerical verification Numerical verification for isotropic bilayer composite Numerical verification for orthotropic fibre-reinforced composite Conclusions References Low-velocity impact of composite laminates: Damage evolution Introduction Composite damage criteria Background Damage initiation criteria Damage evolution criteria Tensile failure modes Fibre compressive failure mode Matrix compressive failure mode Nonlinear shear failure mode Damage prediction of composites under low-velocity impact Impact tests Modelling impact-induced damage using damage criteria methods Modelling impact-induced matrix cracking and splitting using cohesive zone elements Conclusions References Low-velocity impact on preloaded and curved laminates Low-velocity impact on thin and thick laminates Low-velocity impact on thin and thick laminates under preload (tension/compression) Uniaxial preloading Biaxial preloading Analytical and numerical solutions Low-velocity impact on curved laminates Conclusions References High-velocity impact damage in CFRP laminates Introduction Experiments Factors affecting high-velocity impact damage High-velocity impact test Material Experiment results Unidirectional laminate Simple cross-ply laminate Cross-ply laminate with many ply interfaces Quasi-isotropic laminate Discussion Mechanism of high-velocity impact damage Influence of the stacking sequence on damage severity Influence of toughened interlayers on damage severity Concluding remarks References Dynamic damage in FRPs: From low to high velocity Introduction Impact response of composite materials Low-velocity impact Intermediate-velocity impact High-velocity (ballistic) impact Damage mechanisms of FRPs under high-velocity impact Air-blast response Ballistic response Air-blast response of curved CFRP laminates Introduction Experimental procedure Material and specimens Shock-loading apparatus and loading conditions Finite-element model Material model Damage initiation Modelling rate dependency Delamination modelling Finite-element model set-up Fluid-structure coupling and shock-wave loading Results and discussion Finite-element model validation Modes of deflection in CFRP panels Damage in CFRP panels Energy distribution during blast Ballistic-impact response of hybrid woven FRPs Introduction Ballistic experiments Finite-element model Results and discussions V50 for same target thickness and per-unit areal density Damage in composite panels Contribution of damage modes to energy absorption Conclusions Acknowledgements References The dynamic-loading response of carbon-fibre-filled polymer composites Introduction Applications of carbon-fibre composites and dynamic-loading conditions Shock-wave compression concepts Impedance matching General features of polymers and composites under shock-wave loading Materials Filament-wound and chopped carbon-fibre-polymer composites Carbon-fibre-epoxy composites Carbon-fibre-phenolic and carbon-fibre-cyanate ester composites Methods Gas-gun-driven plate impact experiments Equation-of-state modelling Linear us-up fit Hayes model SESAME model Summary Results Resins Epoxy resins Phenolic resins Carbon-fibre-polymer composites Carbon-fibre-epoxy composites Carbon-fibre-phenolic and carbon-fibre-cyanate ester composites Discussion of shock response of CP and CE composites Strength and anisotropy Shock-driven dissociation in CP and CE composites Equation-of-state modelling Summary and conclusions Acknowledgements References The response to underwater blast Introduction Laboratory-scale underwater blast experiments The apparatus and its calibration Unsupported air-backed configuration Unsupported water-backed configuration Clamped air-backed plate configuration Generation and propagation of blast waves in the shock tube Processing and analysis of measurements Experimental results Monolithic construction Sandwich construction Circular composite plates Modelling and optimisation Outline of analytical models Analytical predictions and optimal design maps Conclusions Acknowledgements References Dynamic loading on composite structures with fluid-structure interaction Introduction Experimental study of impact on composite structures with FSI Description of experiment Experimental results and discussion Numerical analysis of impact on composite structures with FSI Numerical modelling techniques Composite failure modelling Experimental study of vibration of composite structures in water Numerical analysis of vibration of composite structures in water Experimental study of cyclic loading on composite structures with FSI Numerical analysis of cyclic loading on composite structures with FSI Summary and conclusion References Shock response of polymer composites Shock propagation in composites Experimental techniques The Hugoniot The Hugoniot elastic limit of composites Shocks through the thickness The shape of the shock profile and shock attenuation Spall behaviour of polymer composites Shocks along the fibre direction The response of composites to air-blast loads The nature of the blast wave in air Experimental techniques Some basics Damage mechanisms The blast response of carbon- and glass-based laminates The blast response of polyurea-based composites The response of sandwich panels to blast loading Concluding remarks and future research needs References Blast response of sandwich structures: The influence of curvature Introduction Materials and manufacturing Quasistatic material characterisation Three-point bend tests on sandwich beams Compression tests on foam core samples Three-point bend tests on face sheet materials Blast test method Blast test results Failure modes exhibited in air-blasted sandwich panels Discussion Effect of curvature on impulse transfer Failure mode initiation Flat panels Curved panels Spatial distribution of failure Delamination Debonding Effect of curvature on failure distribution Front face sheets Back face sheets Cores Conclusions References Cellular sandwich composites under blast loads Introduction Shock waves during blast events Attenuation of a shock wave Generalities of a shock wave generated by an explosion Peak pressure Dynamic pressure Reflected pressure Specific impulse generated in the explosion Scaling of free-field explosions Material behaviour of cellular materials Quasistatic behaviour Dynamic behaviour Energy absorption in cellular materials Test set-ups for measuring energy absorption Shock-wave attenuation by cellular core sandwich composite Sandwich plates with honeycombs Sandwich panels with a structured core Sandwich panels with metallic foams Sandwich panels with polymeric foams Sandwich panels with open foam and shear thickening fluid Sandwich configuration effect Conclusions References Ballistic impact behaviour of composites: Analytical formulation Introduction Materials for ballistic protection Composites for high-performance applications Ballistic impact on composite targets Penetration and perforation process Damage and energy-absorbing mechanisms Analytical formulation Assumptions Projectile velocity through energy balance Formulation for the first time interval Contact force on the target and projectile displacement for the first time interval Energy absorbed by compression of the target directly below the projectile (Region 1) Energy absorbed by compression in the region surrounding the impacted zone (Region 2) Energy absorbed due to stretching and tensile failure of yarns/layers in the region consisting of primary yarns Energy absorbed due to tensile deformation of yarns/layers in the region consisting of secondary yarns Energy absorbed by shear plugging Energy absorbed by delamination and matrix cracking Velocity and contact force at the end of the first iteration of the first time interval Velocity and contact force during second and subsequent iterations of the first time interval Formulation from the second time interval up to the end of the ballistic impact event Projectile tip displacement Energy absorbed by compression Total number of layers failed Energy absorbed by tension Energy absorbed by shear plugging Energy absorbed by delamination and matrix cracking Mass of the moving cone and energy absorbed by conical deformation Energy absorbed by friction between the projectile and the target Velocity of the projectile, contact force, and projectile tip displacement Solution procedure Input parameters Steps involved Experimental studies Experimental details Experimental observations and comparison with analytical predictions Current experimental observations and comparison with analytical predictions Results and discussion Energy absorbed by different mechanisms Contact force, projectile velocity, and tip displacement Ballistic impact behaviour of different materials Strain rate during ballistic impact event Effect of incident impact velocity on projectile tip displacement Effect of target thickness on ballistic impact performance Enhancing ballistic protection capability of composite targets Hybrid composites 3D composites Composites dispersed with nanoparticles Concluding remarks Appendix A Stress-strain data at high strain rates: 2D plain weave E-glass/epoxy Appendix B Stress-strain data at high strain rates: 2D 8H satin weave T300 carbon/epoxy Appendix C Frictional behaviour of composites: 2D plain weave E-glass/epoxy and 2D 8H satin weave T300 carbon/epoxy Acknowledgements References Dynamic fracture behaviour of additively manufactured composite materials Introduction to additive manufacturing Overview Methods of additive manufacturing Dynamic behaviour of AM metal-matrix alloys Introduction to AM metal-matrix composites Dynamic fracture behaviour of AM metal-matrix composites Comparison of quasistatic and dynamic performance of AM and cast metal alloys Comparison of quasistatic performance of AM and cast AlSi10Mg Comparison of dynamic performance of AM and cast AlSi10Mg Dynamic behaviour of additively manufactured polymers Introduction to AM polymers Influence of processing parameters on dynamic behaviour of AM polymers under impact loading Dynamic behaviour of AM polymers with cellular structure under dynamic compression loading Dynamic behaviour of AM polymer composites Introduction to AM polymer composites Effect of type of reinforcement on impact strength of AM polymer composites Effect of type of reinforcement on dynamic fracture of AM polymer composites Conclusion References Impact resistance of sandwich plates Introduction Damage-mitigating sandwich plate designs Experimental assessment of impact resistance of sandwich plates Constituent materials Quasi-static tests High-strain tests Indentation Impact Modelling Finite element model Finite-element results Closing remarks Acknowledgements References Ballistic impact of woven carbon/epoxy composites with ice projectile Introduction Ice projectile interaction with target Composite material and test specimens Ballistic experimental setup Experimental methodology Deformation results Damage analysis Outlook and concluding remarks References Impact behaviour of fibre-metal laminates Introduction Parameters affecting impact behaviour of FMLs Parameters for the FML structure Constituent parameters Other parameters Effects of experimental conditions Energy-dissipation mechanisms Low-velocity impacts on FMLs Experimental studies GLARE (glass fibre/aluminium) Other FMLs: ARALL (aramid fibre/aluminium), CARALL (carbon fibre/aluminium), and Ti/GFRP laminates Numerical modelling High-velocity impacts on FMLs Experimental studies GLARE (glass fibre/aluminium) Other FMLs: Polypropylene-based FMLs, Al/SFRP FML, elastomer-based FMLs and CARALLs Numerical modelling Response of FMLs under blast loading Comparison of properties and performance of FMLs Summary and future prospects Acknowledgement References Dynamic large-deflection bending of laminates Introduction Experimental methods Material Dynamic testing Discussion of experimental results Damage characterisation Finite-element simulations Modelling strategy Model features and solution Interply and intraply damage modelling Discussion of simulation results Response of damaged specimen Response of fractured specimen Conclusions References Energy absorption of composite shin-guard structure under low-velocity impacts Introduction Experimental methodology Multi-scale finite-element model Results and discussion Conclusion Acknowledgement References Index A B C D E F G H I L M N O P Q R S T U V W