ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

دانلود کتاب تغییر شکل دینامیکی، آسیب و شکست در مصالح و سازه های مرکب

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

مشخصات کتاب

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

ویرایش: [2 ed.] 
نویسندگان:   
سری: Woodhead Publishing Series in Composites Science and Engineering 
ISBN (شابک) : 0128239794, 9780128239797 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 649
[650] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 77 Mb 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Dynamic Deformation, Damage and Fracture in Composite Materials and Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تغییر شکل دینامیکی، آسیب و شکست در مصالح و سازه های مرکب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تغییر شکل دینامیکی، آسیب و شکست در مصالح و سازه های مرکب

مواد کامپوزیت، با قرار گرفتن در معرض بارهای دینامیکی بیشتر، به طور فزاینده ای در بخش های هوافضا، دریایی، خودروسازی، ورزش و سایر بخش ها در چند دهه گذشته مورد استفاده قرار گرفته اند. این ویرایش دوم تغییر شکل، آسیب و شکست دینامیکی در مواد و سازه‌های کامپوزیتی جنبه‌های مختلف تغییر شکل، آسیب و شکست دینامیکی را، عمدتاً در لایه‌های کامپوزیتی و سازه‌های ساندویچی، در طیف وسیعی از حوزه‌های کاربردی از جمله هوافضا، خودروسازی، دفاع، بررسی می‌کند. و مهندسی ورزش این کتاب بارگذاری با سرعت کم و بالا را بررسی می کند و حوادث شوک، انفجار و نفوذ را ارزیابی می کند. این نسخه جدید برای پوشش پیشرفت‌های مهم جدید مانند استفاده از ساخت افزودنی برای تولید کامپوزیت‌ها، از جمله الیاف تقویت‌شده، به‌روزرسانی شده است. مطالعات ریزساختاری، تجربی، نظری و عددی جدید با ابزارهای پیشرفته نیز گنجانده شده است. این کتاب همچنین دارای چهار فصل جدید است که موضوعاتی مانند لایه‌برداری دینامیکی، تغییر شکل و شکست دینامیکی در کامپوزیت‌های چاپ‌شده با چاپ سه‌بعدی، ضربه‌های بالستیک با پرتابه‌های تکه‌تکه‌کننده و اثر ضربه‌های متعدد را پوشش می‌دهد. تغییر شکل و شکست دینامیکی مواد کامپوزیتی را بررسی می‌کند، جنبه‌های تجربی، تحلیلی و عددی را پوشش می‌دهد. دارای چهار فصل جدید است که موضوعاتی مانند شکستگی سطحی دینامیکی، شکستگی در کامپوزیت‌های چاپ‌شده با چاپ سه‌بعدی، ضربه‌های بالستیک با پرتابه‌های تکه تکه‌کننده، و تأثیر آدرس‌های ضربه‌ای چندگانه را پوشش می‌دهد. حوزه های کاربردی مانند هوافضا، خودرو، انرژی باد، دفاع و ورزش


توضیحاتی درمورد کتاب به خارجی

Composite materials, with their higher exposure to dynamic loads, have increasingly been used in aerospace, naval, automotive, sports, and other sectors over the past few decades. This second edition of Dynamic Deformation, Damage, and Fracture in Composite Materials and Structures reviews various aspects of dynamic deformation, damage, and fracture, mostly in composite laminates and sandwich structures, in a broad range of application areas including aerospace, automotive, defense, and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast, and penetrative events. This new edition has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting. Examines dynamic deformation and fracture of composite materials, covering experimental, analytical, and numerical aspects Features four new chapters covering topics such as dynamic interfacial fracture, fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting Addresses important application areas such as aerospace, automotive, wind energy, defense, and sports



فهرست مطالب

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures
Copyright
Contributors
Introduction
Damage tolerance of composite structures under low-velocity impact
	Introduction
	Principles of damage tolerance
	The different damage types
	Impact damage
	Damage detectability
	Residual strength after impact
	Impact threat
	Conclusions
	References
Dynamic interfacial fracture
	Introduction
	Conventional analytical approach to modelling dynamic interfacial fracture
		Mode I fracture
			Stationary cracks in DCBs
			Propagating cracks in DCBs
		Mode II fracture
			Stationary cracks in ENF specimens
			Stationary cracks in ELS specimens
			Stationary cracks in CNF specimens
		Experimental-numerical hybrid method
	Dynamic mode I interfacial fracture for stationary crack
		Theoretical development with vibration
			Dynamic response of thin beam
			Dynamic energy release rate and amplitude divergence
		Theoretical development with wave propagation
			ERR divergence and energy flux
			Dynamic energy release rate
			Simplified dynamic ERR with vibrational deflection
		Numerical verification
			Finite element model and verification case
			Verification for developed theory with vibration
			Verification for developed theory with wave propagation
		Crack tip rotation compensation for stationary crack
	Propagation of dynamic mode I interfacial crack
		Rate dependency of fracture toughness
		Theoretical development
			Analytical solution for constant fracture toughness
			Analytical solution for rate-dependent fracture toughness
		Experimental verification
			Experimental verification for DCB under 6.5ms-1 loading rate
			Experimental verification for DCB under 10ms-1 loading rate
		Numerical verification
			Numerical verification for DCB under 6.5ms-1 loading rate
			Numerical verification for DCB under 10ms-1 loading rate
		Crack propagation speed assessment and dynamic ERR
	Dynamic mode II interfacial fracture
		Introduction
		Theoretical development
			Dynamic response of ELS specimen
			Dynamic energy release rate
			Dynamic factor
			Normal modes and crack-tip-loading condition
			ith vibration modal contribution to ERR
		Numerical verification
			Numerical verification for isotropic bilayer composite
			Numerical verification for orthotropic fibre-reinforced composite
	Conclusions
	References
Low-velocity impact of composite laminates: Damage evolution
	Introduction
	Composite damage criteria
		Background
		Damage initiation criteria
		Damage evolution criteria
			Tensile failure modes
			Fibre compressive failure mode
			Matrix compressive failure mode
		Nonlinear shear failure mode
	Damage prediction of composites under low-velocity impact
		Impact tests
		Modelling impact-induced damage using damage criteria methods
		Modelling impact-induced matrix cracking and splitting using cohesive zone elements
	Conclusions
	References
Low-velocity impact on preloaded and curved laminates
	Low-velocity impact on thin and thick laminates
	Low-velocity impact on thin and thick laminates under preload (tension/compression)
		Uniaxial preloading
		Biaxial preloading
	Analytical and numerical solutions
	Low-velocity impact on curved laminates
	Conclusions
	References
High-velocity impact damage in CFRP laminates
	Introduction
	Experiments
		Factors affecting high-velocity impact damage
		High-velocity impact test
		Material
	Experiment results
		Unidirectional laminate
		Simple cross-ply laminate
		Cross-ply laminate with many ply interfaces
		Quasi-isotropic laminate
	Discussion
		Mechanism of high-velocity impact damage
		Influence of the stacking sequence on damage severity
		Influence of toughened interlayers on damage severity
	Concluding remarks
	References
Dynamic damage in FRPs: From low to high velocity
	Introduction
	Impact response of composite materials
		Low-velocity impact
		Intermediate-velocity impact
		High-velocity (ballistic) impact
	Damage mechanisms of FRPs under high-velocity impact
		Air-blast response
		Ballistic response
	Air-blast response of curved CFRP laminates
		Introduction
		Experimental procedure
			Material and specimens
			Shock-loading apparatus and loading conditions
		Finite-element model
			Material model
				Damage initiation
				Modelling rate dependency
				Delamination modelling
			Finite-element model set-up
			Fluid-structure coupling and shock-wave loading
		Results and discussion
			Finite-element model validation
			Modes of deflection in CFRP panels
			Damage in CFRP panels
			Energy distribution during blast
	Ballistic-impact response of hybrid woven FRPs
		Introduction
		Ballistic experiments
		Finite-element model
		Results and discussions
			V50 for same target thickness and per-unit areal density
			Damage in composite panels
			Contribution of damage modes to energy absorption
	Conclusions
	Acknowledgements
	References
The dynamic-loading response of carbon-fibre-filled polymer composites
	Introduction
		Applications of carbon-fibre composites and dynamic-loading conditions
		Shock-wave compression concepts
		Impedance matching
		General features of polymers and composites under shock-wave loading
	Materials
		Filament-wound and chopped carbon-fibre-polymer composites
			Carbon-fibre-epoxy composites
			Carbon-fibre-phenolic and carbon-fibre-cyanate ester composites
	Methods
		Gas-gun-driven plate impact experiments
		Equation-of-state modelling
			Linear us-up fit
			Hayes model
			SESAME model
			Summary
	Results
		Resins
			Epoxy resins
			Phenolic resins
			Carbon-fibre-polymer composites
				Carbon-fibre-epoxy composites
				Carbon-fibre-phenolic and carbon-fibre-cyanate ester composites
	Discussion of shock response of CP and CE composites
		Strength and anisotropy
		Shock-driven dissociation in CP and CE composites
		Equation-of-state modelling
	Summary and conclusions
	Acknowledgements
	References
The response to underwater blast
	Introduction
	Laboratory-scale underwater blast experiments
		The apparatus and its calibration
			Unsupported air-backed configuration
			Unsupported water-backed configuration
			Clamped air-backed plate configuration
		Generation and propagation of blast waves in the shock tube
		Processing and analysis of measurements
	Experimental results
		Monolithic construction
		Sandwich construction
		Circular composite plates
	Modelling and optimisation
		Outline of analytical models
		Analytical predictions and optimal design maps
	Conclusions
	Acknowledgements
	References
Dynamic loading on composite structures with fluid-structure interaction
	Introduction
	Experimental study of impact on composite structures with FSI
		Description of experiment
		Experimental results and discussion
	Numerical analysis of impact on composite structures with FSI
		Numerical modelling techniques
		Composite failure modelling
	Experimental study of vibration of composite structures in water
	Numerical analysis of vibration of composite structures in water
	Experimental study of cyclic loading on composite structures with FSI
	Numerical analysis of cyclic loading on composite structures with FSI
	Summary and conclusion
	References
Shock response of polymer composites
	Shock propagation in composites
		Experimental techniques
		The Hugoniot
		The Hugoniot elastic limit of composites
		Shocks through the thickness
		The shape of the shock profile and shock attenuation
		Spall behaviour of polymer composites
		Shocks along the fibre direction
	The response of composites to air-blast loads
		The nature of the blast wave in air
		Experimental techniques
		Some basics
		Damage mechanisms
		The blast response of carbon- and glass-based laminates
		The blast response of polyurea-based composites
		The response of sandwich panels to blast loading
	Concluding remarks and future research needs
	References
Blast response of sandwich structures: The influence of curvature
	Introduction
	Materials and manufacturing
	Quasistatic material characterisation
		Three-point bend tests on sandwich beams
		Compression tests on foam core samples
		Three-point bend tests on face sheet materials
	Blast test method
	Blast test results
		Failure modes exhibited in air-blasted sandwich panels
	Discussion
		Effect of curvature on impulse transfer
		Failure mode initiation
			Flat panels
			Curved panels
		Spatial distribution of failure
			Delamination
			Debonding
		Effect of curvature on failure distribution
			Front face sheets
			Back face sheets
			Cores
	Conclusions
	References
Cellular sandwich composites under blast loads
	Introduction
	Shock waves during blast events
		Attenuation of a shock wave
		Generalities of a shock wave generated by an explosion
		Peak pressure
		Dynamic pressure
		Reflected pressure
		Specific impulse generated in the explosion
		Scaling of free-field explosions
	Material behaviour of cellular materials
		Quasistatic behaviour
		Dynamic behaviour
		Energy absorption in cellular materials
		Test set-ups for measuring energy absorption
	Shock-wave attenuation by cellular core sandwich composite
		Sandwich plates with honeycombs
		Sandwich panels with a structured core
		Sandwich panels with metallic foams
		Sandwich panels with polymeric foams
		Sandwich panels with open foam and shear thickening fluid
		Sandwich configuration effect
	Conclusions
	References
Ballistic impact behaviour of composites: Analytical formulation
	Introduction
	Materials for ballistic protection
	Composites for high-performance applications
	Ballistic impact on composite targets
		Penetration and perforation process
		Damage and energy-absorbing mechanisms
		Analytical formulation
			Assumptions
			Projectile velocity through energy balance
			Formulation for the first time interval
			Contact force on the target and projectile displacement for the first time interval
			Energy absorbed by compression of the target directly below the projectile (Region 1)
			Energy absorbed by compression in the region surrounding the impacted zone (Region 2)
			Energy absorbed due to stretching and tensile failure of yarns/layers in the region consisting of primary yarns
			Energy absorbed due to tensile deformation of yarns/layers in the region consisting of secondary yarns
			Energy absorbed by shear plugging
			Energy absorbed by delamination and matrix cracking
			Velocity and contact force at the end of the first iteration of the first time interval
			Velocity and contact force during second and subsequent iterations of the first time interval
			Formulation from the second time interval up to the end of the ballistic impact event
			Projectile tip displacement
			Energy absorbed by compression
			Total number of layers failed
			Energy absorbed by tension
			Energy absorbed by shear plugging
			Energy absorbed by delamination and matrix cracking
			Mass of the moving cone and energy absorbed by conical deformation
			Energy absorbed by friction between the projectile and the target
			Velocity of the projectile, contact force, and projectile tip displacement
	Solution procedure
		Input parameters
		Steps involved
	Experimental studies
		Experimental details
		Experimental observations and comparison with analytical predictions
		Current experimental observations and comparison with analytical predictions
	Results and discussion
		Energy absorbed by different mechanisms
		Contact force, projectile velocity, and tip displacement
		Ballistic impact behaviour of different materials
		Strain rate during ballistic impact event
		Effect of incident impact velocity on projectile tip displacement
		Effect of target thickness on ballistic impact performance
	Enhancing ballistic protection capability of composite targets
		Hybrid composites
		3D composites
		Composites dispersed with nanoparticles
	Concluding remarks
	Appendix A
		Stress-strain data at high strain rates: 2D plain weave E-glass/epoxy
	Appendix B
		Stress-strain data at high strain rates: 2D 8H satin weave T300 carbon/epoxy
	Appendix C
		Frictional behaviour of composites: 2D plain weave E-glass/epoxy and 2D 8H satin weave T300 carbon/epoxy
	Acknowledgements
	References
Dynamic fracture behaviour of additively manufactured composite materials
	Introduction to additive manufacturing
		Overview
		Methods of additive manufacturing
	Dynamic behaviour of AM metal-matrix alloys
		Introduction to AM metal-matrix composites
		Dynamic fracture behaviour of AM metal-matrix composites
		Comparison of quasistatic and dynamic performance of AM and cast metal alloys
			Comparison of quasistatic performance of AM and cast AlSi10Mg
			Comparison of dynamic performance of AM and cast AlSi10Mg
	Dynamic behaviour of additively manufactured polymers
		Introduction to AM polymers
		Influence of processing parameters on dynamic behaviour of AM polymers under impact loading
		Dynamic behaviour of AM polymers with cellular structure under dynamic compression loading
	Dynamic behaviour of AM polymer composites
		Introduction to AM polymer composites
		Effect of type of reinforcement on impact strength of AM polymer composites
		Effect of type of reinforcement on dynamic fracture of AM polymer composites
	Conclusion
	References
Impact resistance of sandwich plates
	Introduction
	Damage-mitigating sandwich plate designs
	Experimental assessment of impact resistance of sandwich plates
		Constituent materials
			Quasi-static tests
			High-strain tests
		Indentation
		Impact
	Modelling
		Finite element model
		Finite-element results
	Closing remarks
	Acknowledgements
	References
Ballistic impact of woven carbon/epoxy composites with ice projectile
	Introduction
	Ice projectile interaction with target
	Composite material and test specimens
	Ballistic experimental setup
	Experimental methodology
	Deformation results
	Damage analysis
	Outlook and concluding remarks
	References
Impact behaviour of fibre-metal laminates
	Introduction
	Parameters affecting impact behaviour of FMLs
		Parameters for the FML structure
			Constituent parameters
			Other parameters
		Effects of experimental conditions
		Energy-dissipation mechanisms
	Low-velocity impacts on FMLs
		Experimental studies
			GLARE (glass fibre/aluminium)
			Other FMLs: ARALL (aramid fibre/aluminium), CARALL (carbon fibre/aluminium), and Ti/GFRP laminates
		Numerical modelling
	High-velocity impacts on FMLs
		Experimental studies
			GLARE (glass fibre/aluminium)
			Other FMLs: Polypropylene-based FMLs, Al/SFRP FML, elastomer-based FMLs and CARALLs
		Numerical modelling
	Response of FMLs under blast loading
	Comparison of properties and performance of FMLs
	Summary and future prospects
	Acknowledgement
	References
Dynamic large-deflection bending of laminates
	Introduction
	Experimental methods
		Material
		Dynamic testing
		Discussion of experimental results
		Damage characterisation
	Finite-element simulations
		Modelling strategy
		Model features and solution
		Interply and intraply damage modelling
		Discussion of simulation results
			Response of damaged specimen
			Response of fractured specimen
	Conclusions
	References
Energy absorption of composite shin-guard structure under low-velocity impacts
	Introduction
	Experimental methodology
	Multi-scale finite-element model
	Results and discussion
	Conclusion
	Acknowledgement
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




نظرات کاربران