دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Kenneth Reifsnider (editor)
سری: Woodhead Publishing Series in Composites Science and Engineering
ISBN (شابک) : 0128182601, 9780128182604
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 457
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 41 مگابایت
در صورت تبدیل فایل کتاب Durability of Composite Systems (Woodhead Publishing Series in Composites Science and Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دوام سیستم های کامپوزیت () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دوام سیستمهای مرکببا چالش تعریف این قوانین و الزامات، از اصول اولیه گرفته تا کاربردها در طیف متنوعی از زمینههای فنی انتخاب شده برای تشکیل مجموعهای از مفاهیم و روششناسی که حوزه را تعریف میکنند، پاسخ میدهد. دوام در سیستم های مواد کامپوزیتی به عنوان یک رشته مدرن این رشته نه تنها شامل دقت کلاسیک مکانیک، فیزیک و شیمی، بلکه عناصر مهم ترمودینامیک، تجزیه و تحلیل داده ها، و کمی سازی عدم قطعیت آماری و همچنین سایر الزامات موضوع مدرن است. این کتاب خلاصهای جامع از این رشته را ارائه میکند که هم برای استفاده مرجع و هم برای استفاده آموزشی مناسب است.
خواندن آن برای محققان دانشگاهی و صنعتی، دانشمندان و مهندسان مواد و همه کسانی که در طراحی، تجزیه و تحلیل و کار میکنند ضروری است. ساخت سیستم های مواد مرکب.
Durability of Composite Systems meets the challenge of defining these precepts and requirements, from first principles, to applications in a diverse selection of technical fields selected to form a corpus of concepts and methodologies that define the field of durability in composite material systems as a modern discipline. That discipline includes not only the classical rigor of mechanics, physics and chemistry, but also the critical elements of thermodynamics, data analytics, and statistical uncertainty quantification as well as other requirements of the modern subject. This book provides a comprehensive summary of the field, suited to both reference and instructional use.
It will be essential reading for academic and industrial researchers, materials scientists and engineers and all those working in the design, analysis and manufacture of composite material systems.
Cover Durability of Composite Systems Copyright Contributors Introduction 1 - Foundations of modeling of composites for durability analysis 1.1 Introduction to micro–macro modeling with numerical methods 1.1.1 Basic concepts in micro–macro modeling 1.1.2 Historical overview and objectives of this chapter 1.2 Computational grains for particulate composites 1.2.1 Governing equations for 3D elastic heterogeneous materials 1.2.2 Multifield boundary variational principles for 3D computational grain method 1.2.3 Papkovich–Neuber solution 1.2.4 Spherical harmonics 1.2.5 The scaled Trefftz trial functions for the inclusion and matrix 1.2.6 Algorithm for the implementation of computational grains 1.2.7 Validation of computational grains 1.3 Computational grains for fiber composites 1.3.1 Multifield boundary variational principles for fiber composites 1.3.2 Papkovich–Neuber solutions with cylindrical harmonics 1.3.3 Stiffness matrix and algorithmic implementation of computational grains 1.3.4 Validation of computational grains 1.4 Modeling of composites with computational grains 1.4.1 Materials homogenization with computational grains 1.4.2 Parallel computation and direct numerical simulation of composites 1.5 Summary References 2 - Role of uncertainty in the durability of composite material systems∗ 2.1 Durability with uncertainty: engineer's second fundamental problem 2.1.1 What is durability? 2.1.2 What is uncertainty? 2.1.3 What is durability with uncertainty 2.2 Seven types of uncertainty in data and modeling, and eight statistical tools 2.2.1 Three types of data uncertainty, DU1a, DU1b, and DU1c, for a univariate data set 2.2.2 Three types of model uncertainty, MU2a, MU2b, and MU2c, for data modeling 2.2.3 One type of model uncertainty, MU3, for system modeling 2.2.4 Eight statistical tools to estimate seven types of uncertainty 2.3 Data-set uncertainty (DU1a) and data-parameter uncertainty (DU1b) 2.3.1 Data-set uncertainty (DU1a) and Tool-1 2.3.2 Data-parameter uncertainty (DU1b) and Tool-2 2.4 Data-coverage uncertainty (DU1c) from specimen to full-size structures 2.5 Model-function uncertainty (MU2a(f)) for error propagation 2.5.1 Model-function uncertainty (MU2a) and Tool-3 (NUM) 2.5.2 Model-function uncertainty (MU2a) and Tool-4 (error propagation) 2.5.3 Model-function uncertainty (MU2a) and Tool-5 (LLSQ) 2.6 Model-compute uncertainty (MU2b(cf0)) for model verification 2.7 MU2b(cf) and model-physics uncertainty (MU2c(cf)) 2.7.1 Model-compute uncertainty (MU2b(cf)) and Tool-7 (DEX) 2.7.2 Model-physics uncertainty (MU2c(cf)) and Tool-7 (DEX) 2.7.3 Model-physics uncertainty (MU2c(cf)) and Tool-8 (ASTM E691) 2.8 Model-system uncertainty (MU3(sf)) for system verification 2.9 Four types of durability with uncertainty for modeling material systems 2.10 Durability with uncertainty (DuU1a) for a smooth simple system under cyclic load without scaling 2.11 Durability with uncertainty (DuU1b) for a cracked simple system under cyclic load without scaling 2.12 Durability with uncertainty (DuU2a) for validating an FRP composite elastic constants database without scaling 2.12.1 A database of elastic constants and thermal expansion coefficients for FRP 2.12.2 Estimation of data-set uncertainty of elastic constants of FRP without scaling 2.12.3 Validation of an FRP composite elastic constants database without scaling 2.13 Durability with uncertainty (DuU2b) for a 2D-holed square composite plate under static load 2.14 DuU3, DuU4, …, DuUn for modeling durability of composite material systems Appendix A Statistical analysis software package named DATAPLOT (DP) What is DATAPLOT? How to download software and its documentation? A simple DATAPLOT example Appendix B A sample Tool-1 DP code for data uncertainty DU1a Appendix C Two sample Tool-2 DP codes for data uncertainty DU1b and DU1c Appendix D NIST uncertainty machine (Tool-3) for model uncertainty MU2a What is NIST Uncertainty Machine? How to download software and its documentation A simple NUM example Instructions Appendix E A sample Tool-5 DP code for model uncertainty MU2a Appendix F A sample Tool-6 DP code for model uncertainty MU2b Appendix G A sample Tool-7 DP code for model uncertainty MU2b, MU2c, and MU3 Disclaimer References 3 - Durability of aerospace material systems 3.1 Progressive damage analysis by discrete damage modeling 3.1.1 Introduction 3.2 Computational methodology 3.2.1 Static failure analysis 3.2.2 Fatigue failure criterion for MIC insertion 3.2.3 Fatigue cohesive law 3.2.4 Fatigue DDM algorithm 3.2.4.1 Modified fatigue algorithm 3.3 Verification of Rx-FEM coupon-level analysis 3.3.1 DCB analysis 3.3.2 ENF analysis 3.3.3 MMB verification study 3.4 Validation of Rx-FEM subelement-level analysis 3.4.1 Clamped tapered beam—background 3.4.1.1 Static analysis Experimental observations Effect of thermal residual stress Energy dissipation methods 3.4.1.2 Static analysis conclusions 3.4.1.3 Fatigue analysis CTB fatigue problem statement Results and comparisons 3.4.1.4 Fatigue analysis conclusions 3.4.2 Three-point bend with flange (3PB-F) 3.4.2.1 Model description 3.4.2.2 Results and discussion 3PB-F Conclusions 3.5 Ply-level constitutive behavior methods 3.6 Machine learning methods 3.7 Chapter conclusions Acknowledgments References 4 - Response of composite engineering structures to combined fire and mechanical loading and fatigue durability 4.1 Introduction and background 4.1.1 Marine composites and fire-related design criteria 4.1.2 Wind turbine composites and fatigue-related design criteria 4.2 Mechanistic description of fire and fatigue performance of structural composites 4.2.1 Composites materials subjected to fire conditions 4.2.2 Structural composites materials subjected to combined load and fire conditions 4.3 Fatigue damage of structural composites 4.3.1 Fatigue damage: constant amplitude loading 4.3.2 Fatigue damage: effects of loading frequency 4.3.3 Fatigue damage: spectrum fatigue loading 4.3.4 Fatigue damage: temperature and moisture effects References 5 - Advanced composite wind turbine blade design and certification based on durability and damage tolerance 5.1 Introduction 5.1.1 Problem statement 5.1.2 Background 5.1.3 Objective 5.2 Methodology 5.2.1 Building block approach (ASTM coupon test standards) 5.2.2 Composite material calibration 5.2.2.1 Continuous fiber 5.2.2.2 Woven fabric composites 5.2.2.3 Nanoenhanced matrix 5.2.3 Multi-scale progressive failure analysis 5.2.4 Fracture mechanics 5.2.4.1 Virtual crack closure technique 5.2.4.2 Discrete cohesive zone modeling 5.2.5 Probabilistic and reliability analysis 5.2.6 Certification approach 5.3 Wind blade design technique and analysis 5.4 Results and discussion 5.4.1 Material modeling calibration and validation 5.4.1.1 Static properties calibration and validation 5.4.2 Tapered blade analysis and results 5.4.2.1 Failure prediction and test validation of tapered composite under static and fatigue loading Strain energy release rate Experimentation Material systems Simulation results Static simulation results 5.4.3 Nine meter blade 5.4.3.1 Durability and reliability of wind turbine composite blades using a robust design approach [10] 5.4.3.2 Description of blade FEA model and blade materials 5.4.3.3 Simulation of blade static test 5.4.3.4 Fatigue evaluation of a 9-m wind turbine blade 5.4.3.5 Blade weight analysis 5.4.3.6 Blade durability and damage tolerance probabilistic sensitivity analysis 5.4.3.7 Blade weight reduction with robust design 5.4.3.8 Improving wind blade structural performance with the use of resin enriched with nanoparticles [11] 5.4.3.9 Insertion of silica nanoparticles in a matrix of glass composite 5.4.3.10 D&DTBlade results with glass composite infused with silica nanoparticles 5.4.3.11 Summary 5.4.4 Simulation of a 35-m wind turbine blade under fatigue loading 5.4.5 Conclusion References 6 - Durability of fiber-reinforced plastics for infrastructure applications 6.1 Introduction 6.2 Application of fiber-reinforced polymer in civil infrastructure 6.2.1 Internal reinforcement (rebar) 6.2.2 External reinforcement 6.3 Environmental conditions 6.4 Durability of composites in aqueous environments 6.5 Durability of composites in subzero and freeze–thaw conditions 6.6 Durability of composites exposed to ultraviolet radiation 6.7 Durability of composites exposed to elevated temperature and fire 6.8 Durability of composites under fatigue loads 6.9 Alkali effects 6.10 Analytical models 6.10.1 Predicting hygrothermal degradation of composites 6.10.2 Prediction of bond strength at elevated temperature References 7 - Geosynthetics in geo-infrastructure applications 7.1 Introduction and background 7.2 Durability of geosynthetics 7.3 Manufacturing processes 7.4 Infrastructure application areas 7.5 Transportation infrastructure case studies 7.5.1 Case study 1: Geocells for reinforcing base materials 7.5.2 Case study 2: Wicking geotextiles for pavement infrastructure 7.5.3 Case study 3: Geofoam for mitigating bridge approach slab settlements 7.5.4 Case study 4: Slope stability enhancement using fibers 7.6 Summary Acknowledgments References 8 - Durability of composite materials for nuclear energy systems 8.1 Introduction 8.2 Mechanical properties of ceramics as pertains to the elemental release 8.3 Corrosion/leaching studies of candidate single-phase and multiphase materials 8.3.1 Corrosion and leaching techniques 8.3.2 PCT product characterization test 8.3.3 MCC-1 monolith test 8.3.4 Vapor hydration test 8.3.5 Corrosion studies of glass waste forms 8.3.6 Corrosion studies of multiphase waste forms 8.3.6.1 SYNROC type waste forms C 8.3.7 Corrosion studies of single-phase waste forms 8.3.7.1 Zirconolite and pyrochlore 8.3.7.2 Perovskite 8.3.7.3 Hollandite 8.3.8 Uranium dioxide 8.4 Radiation effects on surface, mechanical properties, and leaching 8.4.1 Radiation damage processes 8.4.2 Radiation damage process for crystalline structures 8.4.2.1 Frenkel pair defects 8.4.2.2 Electronic defects 8.4.2.3 Volume change 8.4.2.4 Crystalline long-range order amorphization 8.4.3 Radiation induced surface damage 8.4.3.1 Amorphization 8.4.3.2 The effect of volume expansion on the surface 8.4.3.3 How radiation effects mechanical properties 8.4.3.4 How radiation effects leaching 8.5 Morphology drivers for irreversible species diffusion and transport in HeteroFoams 8.5.1 Flux of an included species References 9 - Work of electrochemical pressurization of a pore in an oxygen ion conducting solid electrolyte and implications concerning ... 9.1 Introduction 9.2 Model 9.2.1 Estimation of strain energy in YSZ 9.2.2 Significance of internal pressurization 9.2.3 The radial displacement 9.2.4 Calculation of strain energy as work done when the pore diameter changes with pressure 9.2.5 Pore pressurization 9.2.6 A simplified derivation assuming a fixed pore radius (applicable at low pressures) 9.2.7 Time required for pressurization 9.2.8 Pore pressurization using a long cylinder and a piston 9.3 Possible experiments 9.4 Summary Acknowledgments References 10 - Durability of medical composite systems 10.1 Composites in medical systems 10.1.1 Implantable medical composites 10.1.1.1 Dental composites 10.1.1.2 Composites for organ implant 10.1.1.3 Composites for bone implants 10.1.1.4 Tissue engineered composites 10.1.1.5 Composites for drug delivery 10.1.2 Composites for external medical devices 10.1.2.1 Composite wheelchairs and surgical tools 10.1.2.2 Composites for medical machinery 10.1.2.3 Composites for prosthetic devices 10.1.2.4 Composites for wearable devices 10.2 Properties affecting the durability of medical composite systems 10.2.1 Biocompatibility 10.2.2 Thermal expansion 10.2.3 Elastic modulus and toughness 10.3 Types of failure 10.3.1 Degradation and corrosion 10.3.2 Cavitation 10.3.3 Wear 10.4 Improving durability of medical composite systems 10.5 Closing remarks References 11- Durability of bonded composite systems 11.1 Introduction 11.2 Types of adhesive bonding 11.3 Theories of adhesive bonding 11.4 Surface treatment method of adhesive bonding 11.5 Surface characterization methods 11.6 Durability and materials state analysis 11.6.1 Environmental/aging 11.6.2 Broadband dielectric spectroscopy for bond material state assessment 11.6.3 Quality assessment of adhesive bonds based on broadband dielectric spectroscopy 11.7 Conclusion References 12 - Durability of polymer matrix composites fabricated via additive manufacturing 12.1 Introduction 12.2 Approaches to composite additive manufacturing 12.2.1 Short fiber fused filament fabrication 12.2.2 Continuous fiber fused filament fabrication 12.2.2.1 Dual nozzle continuous fiber fused filament fabrication 12.2.2.2 Continuous fused filament fabrication via coextrusion 12.2.2.3 Nonplanar fused filament fabrication 12.3 Techniques for enhancing the durability of composite FFF structures 12.3.1 Voids in printed structures 12.3.1.1 Effect of print parameters on material density 12.3.1.2 Effect of deposition toolpath on material density 12.3.2 Weld strength in composite FFF processing 12.3.3 Wetting and fiber-matrix interfacial bond strength 12.3.4 Effect of printed fiber orientation and distribution 12.3.4.1 Fiber orientation and distribution effects on mechanical properties 12.3.4.2 Fiber orientation around holes 12.3.4.3 Z-pinning 12.4 Engineered composite cellular structures 12.4.1 Open cell composite lattice structures 12.4.2 Closed cell plate lattice structures 12.5 Summary and conclusions References Index A B C D E F G H I L M N O P R S T U V W X Y Z Back Cover