دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Cécile Le Floch-Fouéré (editor), Pierre Schuck (editor), Gaëlle Tanguy (editor), Luca Lanotte (editor) سری: ISBN (شابک) : 0815359985, 9780815359982 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 297 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Drying in the Dairy Industry (Advances in Drying Science and Technology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خشک کردن در صنایع لبنی (پیشرفت در علم و فناوری خشک کردن) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با تولید بیش از 12 میلیون تن پودرهای لبنی در هر سال در مقیاس جهانی، بخش خشک کردن تا حد زیادی عامل فرآوری شیر و آب پنیر است. به طور کلی در نظر گرفته می شود که 40٪ از ماده خشک جمع آوری شده به طور کلی به شکل پودر در می آید. علاوه بر این، محصولات لبنی تغذیهای که به شکل خشک ارائه میشوند (به عنوان مثال، شیر خشک نوزادان) در دهه گذشته به سرعت رشد کردهاند و اکنون سهم بزرگی از سود این بخش را به خود اختصاص میدهند.
خشککردن در صنعت لبنیات: از فناوریهای تثبیتشده تا نوآوریهای پیشرفته با بازار پودرهای لبنی، با در نظر گرفتن هر دو محصول نهایی و فرآیند و همچنین روابط متقابل آنها، سروکار دارد. مراحل مختلف فرآوری برای تولید پودرهای لبنی شامل فرآیندهای غشایی، همگن سازی، غلظت و تجمع را توضیح می دهد. این کتاب شامل ارائه فناوری های فعلی، پیشرفت های اخیر برای هر یک از آنها و تأثیر آنها بر کیفیت پودرهای نهایی است. در نهایت، یک بخش به نوآوریهای اخیر و روشهای مربوط به فرآیندهای پایدارتر، و همچنین پیشرفتهای اخیر در مقیاس آزمایشگاهی برای درک عمیقتر پدیدههایی که در طول خشک کردن اسپری رخ میدهند، اختصاص دارد.
ویژگیهای کلیدی:< /p>
این کتاب یک کتاب مصنوعی و کار مرجع کامل برای محققان در دانشگاه و صنعت به منظور تشویق تحقیق و توسعه و نوآوری در خشک کردن در صنایع لبنی.
With more than 12M tons of dairy powders produced each year at a global scale, the drying sector accounts to a large extent for the processing of milk and whey. It is generally considered that 40% of the dry matter collected overall ends up in a powder form. Moreover, nutritional dairy products presented in a dry form (eg, infant milk formulae) have grown quickly over the last decade, now accounting for a large share of the profit of the sector.
Drying in the Dairy Industry: From Established Technologies to Advanced Innovations deals with the market of dairy powders issues, considering both final product and process as well as their interrelationships. It explains the different processing steps for the production of dairy powders including membrane, homogenisation, concentration and agglomeration processes. The book includes a presentation of the current technologies, the more recent development for each of them and their impact on the quality of the final powders. Lastly, one section is dedicated to recent innovations and methods directed to more sustainable processes, as well as latter developments at lab scale to go deeper in the understanding of the phenomena occurring during spray drying.
Key Features:
This book is a synthetic and complete reference work for researchers in academia and industry in order to encourage research and development and innovations in drying in the dairy industry.
Cover Half Title Title Page Copyright Page Table of Contents Preface Series Editor Editors Contributors Chapter 1 Spray-dried dairy product categories 1.1 Introduction 1.2 The fundamentals of the spray-drying process in the production of dairy products 1.3 Spray-dried dairy powder products 1.3.1 Conventional dairy powders 1.3.1.1 Skim milk and non-fat milk powders 1.3.1.2 Whole milk powders 1.3.2 High protein milk powders 1.3.2.1 Caseinate powders 1.3.2.2 Milk protein concentrate and milk protein isolate (MPI) powders 1.3.3 High fat dairy powders 1.3.3.1 Cream powders 1.3.3.2 Cheese powders 1.3.4 Buttermilk powder 1.3.5 Whey-based powders 1.3.5.1 Whey powders 1.3.5.2 Whey protein concentrate and whey protein isolate powders 1.3.6 Microencapsulated dairy powders 1.3.7 Infant milk formula 1.3.8 Lactose hydrolyzed milk powder 1.4 Conclusion References Chapter 2 Technology, modeling and control of the processing steps 2.1 Improvement of whey products spray-drying by use of membranes processes 2.1.1 Introduction 2.1.2 Membrane processes and their principles 2.1.2.1 Pressure-driven membrane processes 2.1.2.2 Electrically driven membrane processes 2.1.3 Demineralization 2.1.3.1 Demineralization by pressure-driven membrane technologies 2.1.3.2 Demineralization by electrically driven membrane technologies 2.1.4 Demineralization and delactosation 2.1.5 Demineralization and deacidification 2.1.5.1 Demineralization and deacidification by pressure-driven processes 2.1.5.2 Demineralization and deacidification by electrically driven processes 2.1.6 Conclusion Nomenclature Acknowledgments References 2.2 Concentration by vacuum evaporation 2.2.2 Concentration in falling-film evaporators 2.2.2.1 Working principle of falling-film evaporators 2.2.2.2 Design of multistage falling-film evaporators to increase energy efficiency 2.2.3 Changes caused by vacuum concentration 2.2.4 Heat transfer and film flow 2.2.5 Fouling and cleaning of falling-film evaporators 2.2.5.1 Fouling of evaporators 2.2.5.2 Cleaning of evaporators 2.2.6 Conclusion References 2.3 Lactose crystallization of whey, permeate and lactose 2.3.1 Introduction 2.3.2 Lactose 2.3.2.1 The different forms of lactose 2.3.2.2 Lactose solubility 2.3.2.3 Lactose supersaturation 2.3.2.4 Metastability, induction time and nucleation 2.3.3 Process 2.3.3.1 Principal steps for the production of lactose powder 2.3.3.2 Principal steps for the production of whey and permeate powders 2.3.4 Conclusion References 2.4 Homogenization: a key mechanical process in interaction with product to modulate the organization of fat in spray-dried powders 2.4.1 Introduction 2.4.2 Homogenization: the mechanical process commonly used to disperse fat in droplets 2.4.3 Position of the homogenization process in the technological scheme of spray-dried powder production 2.4.4 Organization of fat within spray-dried powders 2.4.4.1 Physical stability of O/W emulsions 2.4.4.2 Microstructure of fat-filled dairy powders: focus on fat organization 2.4.4.3 Main parameters involved in the organization of fat within spray-dried powders 2.4.4.4 Consequences of the organization of fat on the quality of the powder 2.4.5 Homogenization for the preparation of nanostructured lipid carriers able to encapsulate bioactive compounds 2.4.6 The key role played by homogenization in the preparation of infant milk formula 2.4.6.1 Processed fat droplets in infant milk formula vs. milk fat globules in human milk 2.4.6.2 Future directions in which to improve the structure of fat in IMF: the key role played by homogenization 2.4.7 Conclusion References 2.5 Technology, modeling and control of the processing steps in spray drying 2.5.1 Principles of spray drying 2.5.2 Spray-drying layout and operation 2.5.2.1 Typical multi-stage layout 2.5.2.2 Outlet temperature-based control 2.5.2.3 Fines control and agglomeration 2.5.2.4 Adjusting the feed viscosity 2.5.3 Modeling of spray dryers 2.5.3.1 One-dimensional approach 2.5.3.2 Computational fluid dynamics approach 2.5.3.3 Modeling of droplet drying 2.5.3.4 Modeling of atomization 2.5.4 Unique spray-drying technologies and explorations 2.5.4.1 Single-droplet drying experiments to obtain drying kinetics and morphological changes 2.5.4.2 Mono-disperse droplet spray-drying experiments to validate CFD and to obtain particles under well-controlled operating conditions 2.5.5 Superheated steam spray drying 2.5.6 Nomenclature References 2.6 Agglomeration processes of dairy powders 2.6.1 Introduction 2.6.2 Agglomeration by spray drying 2.6.3 Fluidized-bed agglomeration 2.6.4 Steam-jet agglomeration References 2.7 Product modification in a fluidized bed dryer 2.7.1 Introduction 2.7.2 Underlying physics 2.7.3 Process integration 2.7.4 Mathematical model of the process 2.7.5 Particle structure 2.7.6 Conclusion References Chapter 3 Powder properties and influencing factors 3.1 Glass transition and water activity 3.1.1 Introduction 3.1.2 Glass transition in dairy solids 3.1.2.1 Lactose and dairy powders 3.1.2.2 Water and dairy powders 3.1.3 Water and water activity 3.1.3.1 Water activity 3.1.3.2 Water plasticization 3.1.3.3 Water sorption 3.1.3.4 Critical water activity 3.1.4 Dehydration 3.1.5 Structural relaxations and strength 3.1.6 Conclusions References 3.2 Caking of dairy powders 3.2.1 Introduction 3.2.2 Caking: definition, context, main issues 3.2.3 Influential parameters and main mechanisms 3.2.4 Classification and mechanisms of caking 3.2.5 Mechanical (pressure-induced) caking 3.2.6 Wet (or RH-induced) caking 3.2.6.1 Origin and emergence of water within granular media 3.2.6.2 Water–solid interactions 3.2.7 Thermal (temperature-induced) caking 3.2.8 Chemical (reaction-induced) caking (phase transition) 3.2.9 Caking testing methods 3.2.10 Special case of dairy and dairy-like emulsion powders 3.2.11 Conclusion References 3.3 Whey proteins pre-texturized by heating in dry state 3.3.1 Introduction 3.3.2 Whey protein modifications at the molecular level 3.3.3 Aggregation and polymerization reactions 3.3.4 Functional properties of spray-dried whey powders 3.3.4.1 Viscosity and water-holding capacity 3.3.4.2 Interfacial, foaming and emulsifying properties 3.3.4.3 Heat-set gelling properties 3.3.5 Conclusion References 3.4 Physical properties of spray-dried dairy powders in relation with their flowability and rehydration capacity 3.4.1 Introduction 3.4.2 Powder physical properties 3.4.2.1 Particle size, shape and density 3.4.2.2 Particle microstructure 3.4.2.3 Mechanical properties 3.4.3 Powder flow properties: links with physical properties and characterization methods 3.4.3.1 Powder flow properties: links with physical properties 3.4.3.2 Characterization of powder flow properties 3.4.4 Reconstitution properties: links with physical properties 3.4.5 Conclusion Acknowledgments References 3.5 The microbiology of milk powder processing 3.5.1 Introduction 3.5.2 Microbiota of raw milk 3.5.3 Effects of processing on milk microbiota 3.5.3.1 Centrifugation: clarification and fat standardization 3.5.3.2 Heat treatment 3.5.3.3 Homogenization 3.5.3.4 Concentration 3.5.3.5 Spray drying 3.5.4 Contaminating microorganisms in milk powder 3.5.5 Quality control References Chapter 4 Innovations and prospects 4.1 Infant and follow-on formulae 4.1.1 Introduction to infant milk and follow-on formula 4.1.2 Overview of wet processing 4.1.3 Drying infant milk and follow-on formula 4.1.3.1 Atomization and agglomeration 4.1.3.2 Air supply 4.1.3.3 Dehydration 4.1.3.4 Air-powder separation 4.1.3.5 Powder conveying 4.1.4 Compositional considerations during product development 4.1.4.1 Effect of recipe on emulsification/wet processing 4.1.4.2 Bulk density/volume and scoop volume 4.1.4.3 Effects of recipe on glass transition and stickiness during drying 4.1.4.4 Fat-induced stickiness 4.1.5 Conclusion References 4.2 Lactose hydrolyzed milk powder 4.2.1 Introduction 4.2.2 The enzymatic lactose hydrolysis in milk 4.2.3 Spray drying of concentrated milk with hydrolyzed lactose 4.2.4 Problems associated with the production of lactose hydrolyzed milk powder 4.2.5 Perspectives in the production of lactose hydrolyzed milk powder References 4.3 Properties of functional camel milk powder 4.3.1 Introduction 4.3.2 Composition and properties of camel milk relevant to its drying 4.3.2.1 Important bioactive compounds in camel milk 4.3.2.2 Heat stability of camel milk 4.3.2.3 Thermostability of camel milk proteins 4.3.3 Spray-dried camel milk powder 4.3.3.1 Potential application of spray drying in the production of camel milk powder 4.3.3.2 Physiochemical properties of spray-dried camel milk powder and their changes during storage: a case study 4.3.4 Conclusion and further outlook References 4.4 How to produce dairy powders without the use of a drying tower 4.4.1 Introduction 4.4.2 Principle 4.4.3 Results 4.4.4 Conclusions and perspectives Acknowledgments References 4.5 Prediction of spray-drying parameters: SD2P® software 4.5.1 Introduction 4.5.2 Drying by desorption 4.5.3 Input parameters of the SD2P® program 4.5.3.1 Total amount of desorbed water, total solid content of concentrate and powder dry matter 4.5.3.2 Inlet AH0 and internal fluid bed (IFB) AH0 4.5.3.3 Inlet AH1 and internal fluid bed (IFB) AH1 4.5.3.4 Outlet AH2 4.5.3.5 Energy losses 4.5.3.6 Relative humidity of outlet air 4.5.3.7 Bed drying 4.5.3.8 Airflow rates 4.5.3.9 Constant parameters of the program 4.5.4 Output parameters of the SD2P® program 4.5.5 Process improvement to avoid stickiness 4.5.6 Conclusion References 4.6 Spray drying of probiotics: towards a controlled and efficient process 4.6.1 Introduction 4.6.2 Results: discussion 4.6.3 Conclusion References Chapter 5 The drying of milk at the laboratory scale: From the industrial need to the scientific challenge 5.1 Limitations of the drying process at the industrial scale 5.2 Laboratory investigation of evaporation in dairy systems 5.2.1 State of the art 5.2.2 Single-droplet approach in simplified models of milk: the case of dairy protein mixes 5.3 Microscopy and microfluidic opportunities for studying the drying of dairy protein droplets 5.3.1 Drying-induced internal flows and colloid stratification 5.3.2 Skin mechanical properties 5.3.3 Skin microscopic structure References Index